Trending Topik

Cara Kontrol SOx SO2 pada Gas Buang Pembakaran Batubara (1 of 2)

Diposting oleh On Tuesday, September 01, 2020

SO2 (SOx) dan NO2 (NOx) adalah produk hasil pembakaran fossil fuel, di PLTU dengan bahan bakar batubara 2 gas ini termasuk gas yang berbahaya terhadap lingkungan sehingga harus dikendalikan. 
Berdasarkan Journal of the Air Pollution Control Association (Nannen et al, 2012) sebagai berikut:

Limestone (CaCO3yang digunakan di scrubber bereaksi kimia bermacam-macam, salah satunya adalah menghasilkan produk kristal fase cair (.xH2O) sebagai berikut:

CaCO3 + SO2 + 2 H2O + ½ O2 ---> CaSO4.2 H2O + CO

Pengaruh reaksi kimia limestone terhadap pH untuk dikonversikan menjadi sulphite atau sulphate seperti terlihat di tabel berikut:

Sulphite sangat dihindari karena lebih berbahaya dari sulphate karena sifatnya yang masih reaktif belum stabil (oksidatif) dan ketika menjadi produkpun kurang bisa dimanfaatkan, berbeda dengan sulphate lebih stabil dan bisa digunakan untuk keperluan lain misalnya gypsum sebagai dinding bangunan (alternatif batu bata). Selain itu, sulphite sulit untuk diendapkan daripada sulphate sehingga treatment limbah sulit dilakukan.
Berdasarkan tabel tersebut, untuk menghasilkan sulphate yang cukup banyak (konversi tinggi) maka dikondisikan pH 6-7.
Berikut kutipan dari Basu (2015):
Beberapa senyawa yang bisa digunakan untuk mengikat SO2 seperti: limestone (CaCO3) dan dolomite (CaCO3.MgCO3). Pada temperatur 620 oC terjadi penguraian/pemisahan senyawa carbonate menjadi (CaCOdan MgCO3), sesuai reaksi berikut:

CaCO3.MgCO3 ---> CaCO3 + MgCO3

CaCO3 + MgCO3 ---> CaCO3 + MgO + CO

MgO inilah yang bereaksi lambat dengan SO2 pada temperatur 540-980 oC.


Dibawah ini dijelaskan detail cara kontrol SO2 dan NO2 pada PLTU tipe CFB, sebagai berikut:
1. SOx Control, bisa dikendalikan dengan beberapa cara berikut:
  • Precombustion
Kontrol ini dilakukan adalah pemilihan bahan bakar dengan rendah sulphur sehingga ketika dilakukan pembakaran terjadi pengurangan emisi gas SO2.
  • Combustion Modification
Kontrol ini dilakukan dengan penambahan limestone pada boiler CFB sebagai pengikat (absorbent) suphur sehingga dihasilkan gas buang yang minim kandungan SOx dan dihasilkan produk samping gypsum (CaSO4) yang terbagi menjadi 2 tahapan yaitu Tahapan Tidak Langsung dimana pada inisial pembakaran akan terjadi penguraian senyawa yaitu:
CaCO3 <---> CaO + CO2
Kemudian senyawa hasil penguraian pada suhu 750-950 oC, melanjutkan reaksi pengikatan dengan sulphur yang dinamakan desulphurization sebagai berikut:
CaO + SO2 + ½ O2 <---> CaSO4

CaO + SO3 <---> CaSO4

Gypsum (CaSO4) yang terbentuk ini adalah fase padat, sedangkan yang diatas tadi adalah produk kristal dalam fase cair.

Tahapan Langsung juga bisa terjadi seperti reaksi berikut:

CaCO3 + SO2 + ½ O2 <---> CaSO4 + CO2

CaCO3 + SO3 <---> CaSO4 + CO2

  • Wet & Dry Scrubber
Kondisi wet scrubber menggunakan media air yang dicampur bahan kimia. Gas buang dipaksa kontak dengan kolam (pond) berisi air + bahan absorbent sehingga gas buang yang mengandung SOx terikat dan bereaksi kimia. Bahan kimia yang umum digunakan adalah Lime (CaO), Limestone (CaCO3), Sodium Carbonate (Na2CO3). Pengalaman yang pernah dilakukan sendiri oleh penulis di pabrik kimia untuk minimalisir SOx adalah penggunaan Sodium Hydroxide (NaOH), bahan tersebut memiliki kelebihan tidak menimbulkan residu yang terlalu besar dan dengan dosis sedikit sudah bisa mengatasi SOx namun itu juga memiliki kelemahan seperti harga mahal, penanganan sulit dan bahan cukup berbahaya karena pH basa kuat.

Kondisi dry scrubber menggunakan sistem spray yang dikontakkan dengan gas buang dan umumnya ditambah peralatan electrostatic precipitator (ESP)

Terdapat beberapa kelebihan dan kekurangan penggunaan wet scrubber yang salah satu tipenya adalah flue gas desulfurization (FGD)
Kelebihan:
  1. Merupakan teknologi yang cukup modern
  2. Dapat meminimalisir sisa gas buang dengan kadar sulphur tinggi
  3. Limestone mudah didapatkan dan harga murah
  4. Proses relatif simpel
  5. Efisiensi pengikatan sulphur tinggi mencapai 90%
  6. Gypsum yang dihasilkan berkualitas bagus sehingga bisa digunakan untuk bahan baku industri lain
Kekurangan:
  1. Menghasilkan sludge yang cukup banyak
  2. Sludge sulit dipompa dan dipindahkan
  3. Sludge sulit untuk dicairkan agar mudah mobilisasi
  4. Tempat pembuangan harus khusus
  5. Membutuhkan air dalam kuantitas yang cukup besar
Kriteria yang harus dipertimbangkan dalam pemilihan tipe scrubber adalah:
  1. Penampungan air yang cukup besar untuk keefektifan penyerapan
  2. Relative velocity yang tinggi antara gas dan liquid sehingga efisiensi menjadi lebih tinggi
  3. Surface area liquid yang besar misalnya dibuatkan spray tower atau atomizing membuat area kontak liquid dengan flue gas menjadi lebih luas
  4. Minimum internal part untuk menurunkan tingkat maintenance yang disebabkan korosi atau kerusakan peralatan sehingga downtime turun
  5. Operasi counter-current berlawanan arah antara flue gas dan liquid sehingga proses absorbsi lebih optimal
  6. Preesure drop yang rendah sehingga membuat kinerja pompa lebih ringan
  7. Kemampuan minimalisir partikel solid
Beberapa tipe scrubber yang umum digunakan sebagai berikut:
  • Ventury Scrubber

Berikut karakteristiknya:
  1. Efisiensi penyerapan gas SO2 sangat rendah karena contact time rendah dan kemampuan menahan liquid kecil
  2. Peralatannya sangat simpel dan efisien dalam minimalisir solid
  3. Pressure drop cukup tinggi sehingga beban pompa besar
  4. Mudah diaplikasikan dengan peralatan tambahan lainnya
  5. Alirannya co-current atau searah antara liquid dan flue gas
  6. Membutuhkan laju aliran yang cukup tinggi sehingga biaya operasional relatif mahal
  7. Bagus dalam ketahanan terhadap scaling (kerak) & plugging (pembuntuan)
  8. Bagus dalam minimalisir partikel solid (fly ash)
  • Spray Tower Scrubber
Berikut karakteristiknya:
  1. Teknik ini juga termasuk yang simpel
  2. Pressure drop sangat rendah
  3. Efisiensi cukup rendah karena kemampuan menahan liquid kecil, nilai efisiensi antara 40-85%
  4. Untuk meningkatkan efisiensi atau kecepatan gas yang tinggi membutuhkan dimensi scrubber yang besar sehingga kurang efisien
  5. Beban kerja pompa cukup berat untuk memompa slurry campuran air + limestone menuju spray tower
  6. Membutuhkan peralatan tambahan untuk meminimalisir partikel solid yang terkandung dalam gas
  7. Aliran counter-current
  8. Bagus dalam ketahanan terhadap scaling (kerak) & plugging (pembuntuan)
  9. Bagus dalam minimalisir partikel solid (fly ash)
  • Fixed Bed Scrubber
Berikut karakteristiknya:
  1. Berisi bed yang tertata fixed tidak bubbling sehingga kontak antara gas dan liquid cukup baik dan efisiensi tinggi antara 50-98%
  2. Aliran counter-current (berlawanan arah)
  3. Pressure drop rendah
  4. Kekurangan adalah ketahanan yang kurang terhadap scaling (kerak) & plugging (pembuntuan) karena desain bed yang keras serta fixed & surface area yang besar sehingga bisa terdapat selipan/kumpulan deposit solid di celah-celah bed dan belum mampu dalam minimalisir solid particle (fly ash atau TSS)
  • Mobile Bed Scrubber
Berikut karakteristiknya:
  1. Berisi bed yang tertata mobile/bebas sehingga dikarakteristikkan tipe bubbling sehingga potensi adanya deposit solid di celah bed bisa diminimalisir
  2. Bagus dalam penanganan gas dengan velocity besar tanpa kehilangan efisiensi kerja
  3. Bisa digunakan bed dengan densitas kecil seperti plastik sehingga tingkat bubbling semakin tinggi
  4. Bagus dalam minimalisir gas SO2 dan partikel solid
  5. Bagus dalam kemampuan menahan liquid sehingga menambah contact time
  6. Aliran co-current
  7. Pressure drop sedang
  8. Efisiensi bagus dalam rentang antara 80-95%
KESIMPULAN MACAM-MACAM SOx CONTROL:


Kutip Artikel ini sebagai Referensi (Citation):
Feriyanto, Y.E. (2020). Cara Kontrol SOx SO2 pada Gas Buang Pembakaran Batubara, Best Practice Experience in Power Plantwww.caesarvery.com. Surabaya

Referensi
[1] Woodruff, E.,Lammers, H., and Lammers, T. (2000). Steam Plant Operation, 8th Edition Handbook
[2] Tullin, C., and Ljungstrom, E. (1989). Reaction Between Calcium Carbonate and Sulphur Dioxide. Journal of Energy & Fuels 1989, 3: 284-287
[3] Nannen, L.W., West R.E and  Kreith, F. (2012). Removal of SO2 from Low Sulfir Coal Combustion Gases by Limestone Scrubbing, Journal of the Air Poluution Control Association, 24:1, 29-39
[4] Basu, P. (2015). Circulating Fluidized Bed Boilers, Design, Operation and Maintenance. Canada

Ingin Konsultasi dengan Tim Expert Website, Silakan Hubungi KLIK

Teknik Pengendalian Solid Particle Flue Gas Sisa Pembakaran Bahan Bakar

Diposting oleh On Friday, August 14, 2020

Flue Gas adalah gas buang sisa pembakaran yang sudah tak diinginkan kembali. Istilah ini umum digunakan pada PLTU sebagai hasil sisa pembakaran bahan bakar (gas alam, batubara, biomassa dan lain-lain). Sisa pembakaran batubara ada 2 yaitu fase gas dan padat. Fase gas umumnya COx, SOx, NOx dan fase padat adalah abu terbang (fly ash). Teknik pengendalian fase gas dibahas di artikel berjudul "Cara Kontrol Gas SOx dan NOx pada Pembakaran Batubara". Sedangkan fase solid dikendalikan dengan menggunakan beberapa peralatan sebagai berikut:
  • Cyclone Separator/Multi-Cyclone
Cyclone Separator, sumber gambar: exair.com 
Cyclone Separator, sumber gambar: che.iitb.ac.in
Prinsip yang digunakan adalah gaya sentrifugal yaitu gaya pusar yang mengarah ke arah luar sehingga ketika flue gas yang mengandung solid particle masuk ke cyclone maka akan terlempar kearah luar (dinding tabung cyclone). Karena gaya gravitasi maka solid particle jatuh ke bawah sedangkan gas akan terdorong keatas.
Cyclone separator umumnya digunakan untuk industri menengah ke bawah dengan solid particle berukuran cukup besar dan daya listrik yang dikonsumsi rendah.

  • Electro Static Precipitator (ESP)


Prinsip teknik ini adalah gaya tarik-menarik antara partikel bernuatan positif (+) dan negatif (-). ESP didesain menggunakan 2 material logam yaitu: (i) electrode, dan (ii) collecting plate. Solid particle flue gas melewati diantara 2 logam tersebut, dimana electrode menjadi betegangan negatif (-) akibat pengaruh arus DC high voltage, ketika solid particle mendekat maka akan ter-ionisasi dan ketarik oleh collecting plate yang bertindak sebagai kutub positif (+). Setelah solid particle mengumpul di collecting plate maka dengan automatic hammer memukul plate menyebabkan solid particle jatuh ke ash hopper.
ESP umumnya digunakan untuk industri/PLTU kapasitas besar karena dalam operasinya membutuhkan listrik yang cukup besar, area yang luas dan treatment yang sering.
  • Baghouse Filter
Baghouse filter menggunakan teknik penangkapan debu dengan sarung mess tinggi sebagai filter. Solid particle flue gas akan tertangkap pada sarung dan tidak tertembus karena diameter solid particle > mess sarung. Penggunaan ini umumnya pada industri/PLTU menengah ke bawah dengan pertimbangan penggunaan listrik yang rendah, kadar SOx rendah dan murahnya biaya maintenance.

Kutip Artikel ini sebagai Referensi (Citation):
Feriyanto, Y.E. (2020). Teknik Pengendalian Solid Particle Flue Gas Sisa Pembakaran Bahan Bakar, Best Practice Experience in Power Plantwww.caesarvery.com. Surabaya

Referensi:
[1] Woodruff, E.,Lammers, H., dan Lammers, T. (2000). Steam Plant Operation. Eighth Edition Handbook

Ingin Konsultasi dengan Tim Expert Website, Silakan Hubungi KLIK

Certificate of Analysis (CoA) Batubara Uji Laboratorium

Diposting oleh On Saturday, July 25, 2020

Certificate of Analysis (CoA) adalah sertifikat hasil uji analisis spesimen di laboratorium. Untuk CoA batubara terdapat beberapa komponen yang diuji seperti yang dikuti pada Handbook Steam Plant Operation (Woodruff et al, 2000) sebagai berikut:
  • Moisture (Kandungan Air)-(ASTM D3173)
Tahap uji di laboratorium adalah sampel sebanyak 1 gram ditaruh di oven pada temperatur 220 oF = 105 oC selama 1 jam. Perbedaan berat sebelum dan sesudah dibandingkan dan itu menunjukkan kandungan air. Diambil suhu 105 oC karena air akan teruapkan pada temparatur 100 oC namun karena thermocouple mengukur bagian luar wadah atau sistem saja bukan langsung ke bahan yang di-oven maka diberi spaceoC untuk toleransi. Terdapat 2 jenis moisture yaitu: (isurface (moisture pada permukaan batubara); (iiinherent (moisture pada rongga kapiler batubara)
  • Volatile Matter (Unsur Mudah Menguap)-(ASTM D3175)
Tahap uji di laboratorium adalah sampel diatas dilanjutkan ditempatkan di furnace dan ditutup rapat dengan penkondisian temperatur 1700 oF = 927 oC (mirip dengan pembakaran sebenarnya di boiler PLTU). Gas yang terdeteksi keluar disebut volatile matter. Ini menandakan batubara mudah terbakar.


  • Fixed Carbon (Bahan yang Terbakar)-(ASTM D3172)
Tahap uji di laboratorium adalah melanjutkan lagi sampel diatas namun dengan pengkondisian furnace dibiarkan terbuka kemudian temperatur dinaikkan sehingga sampel sisa yang tertinggal adalah abu. Selisih berat merupakan kandungan fixed carbon (yang terbakar saja). Fixed Carbon = bobot batubara-(bobot moisture+volatile matter+ash). Komposisi umum carbon sebagai berikut: lignite (C70H5O25), subbituminous (C75H5O20), bituminous (C80H5O15dan anthracite (C94H3O3)
  • The Hardgrove Grindability Index (HGI)-(ASTM D409) 
Pengukuran secara empiris yang berhubungan dengan mudah tidaknya batubara untuk dihancurkan. Semakin tinggi menandakan batubara lunak mudah dihancurkan
  • Ash Content (Sisa Pembakaran)-(ASTM D3174, ASTM D3682)
Residu material sisa pembakaran di furnace meliputi: SiO2, Al2O3, TiO2, Fe2O3, CaO, MgO, Na2O, K2O
  • Total Sulfur (ASTM D2492)
Jumlah kandungan sulfate sulfur, pyritic sulfur dan organic sulfur di batubara. Pyritic sulfur adalah indikator potensial dari coal yang bisa menyebabkan abrasif
  • Ash Fusion Temperature (AFT-ASTM D1857)
Temperatur dimana bentuk cone ter-deformasi ke specific shape karena pengaruh oxidazing-reducing. Temperatur ini selaras dengan karakteristik ash melting, dimana bisa digunakan untuk mengklasifikasikan slagging potential. Teknik yang digunakan adalah batubara dibakar dibawah temperatur oksidasi yaitu 799-899 oC sehingga menghasilkan abu dan abu kemudian ditekan pada sebuah cetakan untuk membentuk triagular pyramid (cone) kemudian dipanaskan pelan-pelan sehingga cone mengalami pelunakan sehingga berubah bentuk lebih spesifik seperti berikut:
Terdapat urutan ash melting yaitu: (1original cone dengan ukuran tinggi 19 mm dan lebar dasar 6.35 mm; (2IT (initial deformation) adalah cone mulai melunak; (3ST (softening temperature) adalah cone telah ter-deformasi menjadi spherical (tinggi cone=lebar dasar cone), pada titik ini softening temperature=fusion temperature; (4HT (hemispherical temperature) adalah cone melebur membentuk bulatan dimana tinggi cone = 1/2 lebar dasar cone); (5FT (fluid temperature) adalah cone telah meleleh sepenuhnya (max tinggi 1.59 mm)
  • Abrasiveness Index
Tingkat abarasif dari batubara, dimana memiliki pengaruh terhadap life-time crusher. Tingkat abrasif ini selaras dengan tingkat kandungan quartz/silica. Teknik yang bisa dilakukan adalah dengan mencuci batubara ke larutan asam kemudian menggunakan mikroskop untuk dilakukan pengamatan setiap 1000 partikel terhitung.
  • Coke (Kokas)
Ketika batubara dipanaskan maka materi ringan akan mudah menguap sedangkan materi berat akan mengalami hydrocarbon crack yang membebaskan gas, tar dan residu carbon. Sisa carbon yang berisi ash dan sulfur dipanggil kokas (coke)
  • Slagging & Fouling Factor
Keduanya adalah endapan/deposit yang mengganggu proses transfer panas, dimana: (islagging/scaling adalah deposit yang bersifat sangat keras dan treatment minimalisir menggunakan chemical. Umumnya terdapat pada area yang langsung bersentuhan dengan radiasi api/panas sehingga ketika kena panas maka semakin lama deposit mengeras seperti kristal; (iifouling adalah deposit lunak yang terbentuk karena lapisan suspended solid/ash yang tipis terus-menerus dan umumnya terletak pada area yang tidak bersentuhan langsung dengan api/panas sehingga tidak sampai mengkristal. Treatment minimalisir bisa menggunakan scrapper dan water jet compressor. Berikut formula yang bisa digunakan untuk analisa kemungkinan proses terjadinya slagging & fouling:


Heating value diukur menggunakan bomb calorimeter yaitu peralatan yang terdiri dari bomb (untuk membakar) dan calorimeter (rangkaian komponen untuk mengukur kalori). Langkah kerja sebagai berikut:
1 gram sampel yang sudah dihancurkan dan dikeringkan ditempatkan di-tray dari bomb. Tray kemudian ditaruh di steel bomb yang dilengkapi fuse wire (aliran listrik) untuk membakar. Bomb kemudian ditutup, dihubungkan dengan oxygen tank dan ditekan sehingga sampel terbakar. Disisi luar bomb diberi water sehingga panas yang dihasilkan dari pembakaran sampel di bomb diserap oleh water, diberi juga stirrer untuk meratakan panas pada semua area water. Kenaikan suhu di water diukur menggunakan thermometer. Kemudian dilakukan perhitungan seperti rumus dibawah ini.

Analisis batubara dikategorikan menjadi 2 jenis yaitu:
  • Proximate Analysis (ASTM D3172)
Pengujian batubara meliputi: volatile matter, fixed carbon dan ash content. Lebih gampangnya memahami adalah pengujian batubara secara umum yang tidak spesifik
  • Ultimate Analysis (ASTM D3176)
Pengujian batubara meliputi: carbon (C), hydrogen (H), nitrogen (N) dan sulfur (S). Lebih gampangnya adalah pengujian batubara secara spesifik sampai level unsur
  • Heating Value (ASTM D2015)
Maksimum energi teoritis bahan bakar yang tersedia untuk memproduksi steamGross calorific value ini berasal dari batubara yang diukur menggunakan adiabatic bomb calorimeter. Pengukuran kalori batubara mengacu pada prinsip stoikiometri seperti reaksi pembakaran hydorcarbon berikut:

CxHy + O2 ---> CO2 + H2O

H2O bisa dalam 2 fase yaitu liquid (cair) dan gas (uap) dan berdasarkan perbedaan tersebut terdapat 2 heating value yaitu:
1Higher Heating Value (HHV) adalah energi yang dikeluarkan dari pembakaran unit bahan bakar dengan produknya adalah ash, gas (CO2, SO2, Ndan liquid water). Lebih mudahnya adalah panas dari proses pembakaran pada volume konstan sehingga semua kandungan air ter-kondensasi dalam bentuk cair (H2O cair). Ketika H2O ter-kondensasi dari uap ke cair maka akan melepas kalor sehingga menambah kalori batubara. Mengapa nilai high heating value (HHV) lebih tinggi daripada LHV?? karena heating yang terhitung pada batubara adalah gabungan antara batubara sendiri dengan kalor laten pengembunan air (H2O dari uap menjadi cair) ---> HHV = kalori batubara + kalor latent pengembunan H2O.

2. Low Heating Value (LHV)-(ASTM D407) adalah panas dari proses pembakaran pada volume konstan sehingga semua kandungan air terbentuk menjadi uap (H2O uap). 
Basis pengukuran heating value batubara terbagi menjadi 4 yaitu:
  1. As Received Basis (AR), sampel batubara yang diterima oleh laboratorium sebelum ada proses pengeringan sehingga nilai kalor adalah apa adanya di lapangan. Umumnya basis inilah yang digunakan untuk menghitung efisiensi boiler metode heat-loss
  2. Air Dried Basis (ADB), sampel batubara yang sudah dilakukan pengringan sehingga tidak mengandung SURFACE moisture lagi
  3. Dry Basis (DB), sampel batubara yang tidak mengandung SURFACE + INHERENT moisture (teoritis)
  4. Dry Ash Free Basis (DAFB), sampel batubara yang murni terbebas dari moisture content & ash content, hanya terdapat volatile matter & fixed carbon.

Contoh CoA batubara:

Simak Penjelasan di Video Berikut:
Kutip Artikel ini sebagai Referensi (Citation):
Feriyanto, Y.E. (2020). Certificate of Analysis (CoA) Batubara Uji Laboratorium, Best Practice Experience in Power Plantwww.caesarvery.com. Surabaya

Referensi
[1] Woodruff, E.,Lammers, H., dan Lammers, T. (2000). Steam Plant Operation. Eighth Edition Handbook

Ingin Konsultasi dengan Tim Expert Website, Silakan Hubungi KLIK