Trending Topik

Pengaruh Kesadahan Air (Hardness) dan Alkalinity di Boiler Water

Diposting oleh On Thursday, May 20, 2021

Kesadahan air (hardness water) adalah komposisi air yang mengandung mineral tinggi seperti Ca2+, Mg2+, carbonate, bicarbonate dan sulfat. Juga sebagian kecil dari strontium (Sr) dan barium (Ba) [Frayne, 2002]. Kesadahan ini merugikan jika digunakan untuk operasional misalnya untuk mencuci maka kebutuhan sabun akan lebih ganyak, untuk dimasak maka akan timbul kerak. Di PLTU, parameter hardness water dikendalikan sangat ketat setiap harinya meliputi inlet WTP, outlet CEP dan outlet steam drum. Parameter ini dikendalikan dengan tujuan untuk menentukan strategic planning operasi dan pemeliharaan seperti inlet WTP untuk planning regenerasi resin, outlet CEP untuk analisis kebocoran condenser dan pemeliharaan leak-test half condenser serta outlet steam drum unuk menganalisis potensi pengerakan (slagging) pada boiler-turbine sehingga blowdown harus open cukup besar. Hardness water bisa dilakukan minimalisir seperi yang sudah dijelaskan di artikel: Boiler & Permasalahannya.

Pengalaman ketika menguji dengan XRD pada sampel kerak turbine, ketika terdapat kebocoran condenser yang menggunakan pendingin air sungai maka kandungan dominan adalah silica, diikuti Ca2+ dan Mg2+. Sedangkan jika pendingin air laut adalah Cl-, Na+Ca2+ dan Mg2+. 

BACA JUGA: Analisa Deposit pada Blade Turbine

Alkalinity/alkali/basa adalah golongan IA pada tabel periodik kimia unsur dan juga bisa diartikan sebagai kandungan basa dalam air. Mengapa demikian?? karena basa kuat sendiri adalah jika golongan IA berikatan dengan OH-. Di PLTU kandungan alkali juga dipantau ketat seperti sodium (Na+) dan potassium (K+) dengan metode anion conductivity dan umumnya terletak di superheated steam untuk memantau kelebihan injeksi phospate dan ammonia. Sedangkan cation conductivity/acid conductivity digunakan untuk mendeteksi ion negatif seperti chloride (Cl-), sulphate (SO42-) dan umumnya diletakkan di outlet CEP/condensate dan superheated steam.
Penamaan anion-cation conductivity dan spesific conductivity mengikuti hal berikut:
  • Anion conductivity yang sebenarnya adalah anion exchanged conductivity ---> sampel air dilewatkan resin bed anion exchanger (muatan negative) sehingga muatan ion yang tertangkap dari sampel air adalah positif seperti sodium (Na+) dan potassium (K+)
  • Cation conductivity/Acid conductivity yang sebenarnya adalah cation exchanged conductivity --->  sampel air dilewatkan resin bed cation exchanger (muatan positif) sehingga muatan ion yang tertangkap dari sampel air adalah negatif seperti chloride (Cl-), sulphate (SO42-)
  • Specific conductivity artinya mengukur seluruh ion (positif dan negatif) pada sampel air. Umumnya penyebutan cukup conductivity atau total conductivity

Hardness mengukur potensial pembentukan scale pada jalur yang dilewati air. Terdapat 2 macam pengukuran hardness pada standard asam (carbonat) yaitu: (i) P-alkalinity, untuk indikator titrasi menggunakan phenolphtalein (pH 8.3); (ii) M-alkalinity, untuk indikator titrasi menggunakan methyl orange (pH 3.9).
Hardness bisa diukur sebagai calcium hardness, total hardness (TH) dan alkalinity yang diekspresikan sebagai CaCO3. Kenyataan penyumbang hardness adalah calcium, Ca(HCO3)2 atau magnesium bicarbonate, Mg(HCO3)[Frayne, 2002]. Terdapat 3 klasifikasi hardness water (kesadahan):
  1. Soft water (air lunak), komposisi 40-50 ppm as CaCO3
  2. Medium hardness water, komposisi 50-150 ppm as CaCO3
  3. Hard water (air keras/sadah), komposisi 150-200 ppm as CaCO3

Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2021). Pengaruh Kesadahan Air (Hardness) dan Alkali di Boiler Water, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

Referensi:
[1] Woodruff, E.,Lammers, H., dan Lammers, T. (2000). Steam Plant Operation, Eighth Edition Handbook
[2] Frayne, C. (2002). Boiler Water Treatment Principles and Practice, Vol. 1 dan 2. New York-USA

Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

Catatan Lengkap Pembakaran Batubara (Coal Combustion) Based Experience di Workshop CFB Boiler

Diposting oleh On Saturday, April 10, 2021

Perkembangan teknologi boiler semakin maju dengan meminimalisir kelemahan untuk mencapai efisiensi dan reliability, berikut skema urutannya:


  • Stoker Boiler
Awal mula bahan bakar (batubara) dengan size cukup besar dipanggang pada rantai berjalan (travelling grate). Pergerakan grate lambat sehingga di-estimasi batubara masuk dan sampai ujung sudah menjadi ash. Dari bawah disemburkan udara (PA Fan) yang berfungsi sebagai cooling grate agar coal tidak menempel (slagging). Teknologi ini disebut stoker boiler dan memiliki efisiensi yang cukup rendah karena kemungkinan coal tidak habis terbakar sampai ujung grate.
  • Bubbling Fluidized Bed (BFB) Boiler
Kelemahan stoker yang tidak habis terbakar disempurnakan kembali dengan membuat bubbling sehingga residence time pembakaran membuat coal terbakar lebih sempurna dan unburned carbon (UBC) terminimalisir. BFB ini cukup menambah udara pembakaran (PA Fan) sehingga coal seolah ter-fluidisasi dalam suatu kolom (furnace). Kelemahannya adalah mudah sekali terjadi penyumbatan pada bottom furnace ketika coal tidak benar-benar bubbling dalam furnace.
  • Circulating Fluidized Bed (CFB) Boiler
Kelemahan BFB disempurnakan kembali menjadi CFB, dimana pada prinsipnya melakukan circulating bed material (coal + sand) sehingga potensi untuk bubbling secara keseluruhan menjadi lebih sempurna dan terhindar dari penyumbatan bottom ash. Fluidisasi pada CFB dibantu dengan udara bakar (PA Fan + SA Fan), kelemahan yang mungkin ada pada CFB adalah potensi abrasi dan erosi. Apakah terdapat perbedaan keduanya?? IYA, abrasi adalah penipisan pada material logam (tube boiler) sedangkan erosi pada non-logam (refractory). Berbagai upaya telah dilakukan untuk meminimalisir dampak tersebut seperti: pengecekan thickness boiler, inspeksi refractory, analisa ash (bottom + fly), adjust damper PA + SA Fan, adjust size coal, dan pemilihan properties pasir bed material.
  • Pulverized Coal (PC) Boiler
Kelemahan CFB diminimalisir kembali dengan adanya teknologi PC boiler yaitu coal dihaluskan sehingga luas permukaan pembakaran menjadi besar dan diharapkan batubara langsung terbakar habis sekali lewatan umpan. Potensi abrasi dan erosi bisa diminimalisir karena size coal kecil dan tidak membutuhkan pasir namun untuk dampak ke lingkungan cukup besar karena ash solid + gas langsung terbuang sehingga membutuhkan treatment khusus yang cukup mahal seperti adanya Flue Gas Desulfurization (FGD). Selain itu, PC boiler ini membutuhkan auxiliary power yang cukup tinggi karena adanya pulverizer dan peralatan bantu lainnya sehingga secara ekonomis layak untuk PLTU kepasitas besar.
Melihat beberapa kelebihan dan kelemahan tersebut, maka yang secara ekonomi layak digunakan adalah CFB boiler dengan mempertimbangkan beberapa aspek dan pengoptimalan operasi untuk meminimalisir kelemahannya. Terbukti juga banyak pembangkit di Indonesia adalah tipe CFB.
Berdasarkan Basu (2015) sebagai berikut:
Proses Terbakarnya Batubara di Boiler PLTU Mengikuti Skema Berikut: [Basu, 2015]
Berdasarkan grafik tersebut didapatkan informasi sebagai berikut:
  1. Pada temperatur 200 oC, batubara mengalami drying & heating
  2. Pada temperatur 300-800 oC, kandungan volatile batubara mulai terlepas
  3. Pada temperatur >800 oC, terjadi pembakaran sempurna batubara
Prinsip Heat-Transfer pada Boiler PLTU:
  1. Radiasi, coal terbakar dan panas radiasi mengenai tube boiler
  2. Konduksi, tube boiler yang menyerap panas akan merata pada seluruh bagian metal
  3. Konveksi, panas pada metal kemudian terserap oleh feedwater pada inner tube dan merata sepanjang tube (feedwater-saturated-superheated)
Pembagian Zona Heat-Transfer pada Boiler PLTU:
  1. Combustion Zone, area pembakaran batubara di floor furnace dengan temperatur antara 1100-1200 oC
  2. Radiation Zone, area diatas combustion zone yang bercirikan bubbling bed material sudah tidak ada dengan temperatur antara 800-900 oC
  3. Convection Zone, area dimana fase steam (saturated & superheated) berada dengan temperatur sekitar 650 oC
Berdasarkan Basu (2015) di Boiler CFB dijaga pada range 800-900 oC dengan alasan sebagai berikut:
  1. Pada temperatur tersebut sebagian besar fuel ash tidak mengalami fusi
  2. Pengikatan sulphur efektif di kisaran 850 oC
  3. Alkali metal dari coal tidak teruapkan pada kisaran temperatur tersebut
  4. Pada temperatur tersebut, nitrogen tidak membentuk NOx
Beberapa Hal yang Harus Diperhatikan di Boiler:
  • Boiler PLTU hanya didesain pada 1 tipe coal saja sehingga ketika properties yang masuk berbeda maka akan ada dampak pada operasionalnya sehingga unit PLTU diharapkan memiliki tabel khusus untuk planning operasi ketika ada properties feeding coal maka akan didapatkan beban yang diijinkan untuk dioperasikan
  • Istilah low rank, medium/moderate & high rank coal hanya istilah di marketing penyediaan batu bara saja sedangkan istilah dalam operasional PLTU adalah over-spec atau under-spec coal yang didasarkan pada desain boiler oleh manufacture
  • Berdasarkan prinsip gas ideal, PV=nRT sehingga tekanan (P) berbanding lurus dengan temperatur (T) dan ketika di boiler over-heat maka harus digali adalah penyebab over-pressure. Hal ini bisa disebabkan karena pengaruh PA Fan dan SA Fan sehingga membutuhkan combustion tuning. Hal ini bisa disebabkan juga karena adanya penyumbatan pada air nozzle cap oleh agglomerasi atau adanya fouling di tube boiler
  • Agglomeration pada boiler furnace lebih disebabkan karena berlebihnya feeding coal sedangkan melting karena properties coal itu sendiri yang banyak mengandung Na dan K sehingga menyebabkan titik leleh bed material menjadi turun.
BACA JUGA: Karakteristik Pasir (Bed Sand Material) dan Agglomeration pada Boiler CFB
  • Langkah yang umum dilakukan ketika steam overheating adalah mengaktifkan desuperheater (DSH) menggunakan demineralized water untuk menjaga temperatur steam pada standar Main Steam Temperature (MST). Sedangkan bagian luar yaitu tube boiler tidak terkendali dan tetap overheating sehingga potensi kebocoran mudah terjadi. Hal inilah yang seharusnya menjadi concern juga mengapa tube CFB boiler mudah terjadi leak. Selain itu, jika penggunaan DSH terlalu besar maka MST akan turun dan Main Steam Flow (MSF) turun sehingga langkah umum yang dilakukan operator adalah feeding kembali coal sehingga akan terus menambah temperatur tube boiler sehingga bisa overheating
  • Umpan coal boiler selalu fluktuatif properties-nya dan tergantung juga salah satunya dari jenis penambangannya yaitu: (i) open/ground mining, bertipe lignite cenderung besar kandungan Ca dan Si karena termasuk batubara permukaan yang bersifat lengket, tidak mudah pecah seperti tanah liat; (ii) close/under ground mining, cenderung dominan kandungan S yang bersifat korosif dan CH4 (metana) yang bersifat explosion, termasuk bituminuous & sub-bituminuous yang bersifat brittle mudah pecah. Stock batubara ini bukan ranah O&M pembangkitan melainkan owner sehingga sebagai O&M harus bisa menjelaskan dampak ketika coal properties yang diberikan under-spec dari desain boiler
  • Pembakaran di boiler hanya untuk yang reaksi bersifat eksothermis seperti C menjadi CO2, H menjadi H2O dan S menjadi SO2

Sedangkan N tidak terbakar karena untuk membentuk NOmembutuhkan panas yang sangat tinggi kisaran 1200-1300 oC (sesuai grafik yang diarsir diatas) dan sifat reaksinya adalah endothermis.  NOini di CFB boiler jarang bisa tercapai karena furnace temperature yang hanya berkisar antara 800-900 oC bahkan ketika sampai di convection zone turun sampai 650 oC. Sedangkan Ohanya sebagai pe-reduksi saja unsur yang terkandung pada coal
  • Coal tidak terbakar sempurna atau efisiensi termal rendah salah satunya adalah tingginya moisture content. Rekomendasi yang umum dilakukan adalah drying coal atau menimbun coal di ruang beratap (coal dome), namun perlu diketahui bahwa moisture content ada 2 yaitu: (i) surface content, terletak pada permukaan coal saja; (ii) inherent content, terletak didalam coal
  • CFB boiler cukup efektif dalam pengikatan kandungan SO2 karena didesain ada injector limestone/kapur (CaCO3) namun kebanyakan CFB boiler di Indonesia tidak mengaktifkan injeksi tersebut karena coal yang dipakai mengandung kadar S (sulfur content) yang rendah.
  • Reaksi pembentukan yang terjadi pada pembakaran coal sebagai berikut: S + O2 --> SO2 bersifat eksothermis dan reaksi penguraian kapur sebagai berikut: CaCO3 ---> CaO + CO2 bersifat eksothermis. Ketika CaO berikatan dengan SO2 maka terbentuk gypsum (CaSO4) fase solid yang bisa terbuang lewat bottom ash. Berdasarkan hal tersebut, maka limestone berfungsi ganda selain untuk pengikat gas B3 juga sebagai penyerap panas sehingga boiler furnace tidak overheating
  • Exit flue gas temperature yang dianjurkan adalah 123 oC, karena jika dibawah temperature point tersebut akan terjadi dew-point corrosion yaitu pengkorosian pada ujung Air Pre-Heater (APH) sedangkan untuk diatasnya akan menyumbang kenaikan heat-loss pembakaran. Setiap kenaikan 4 oC akan meningkatkan heat-loss sebesar 5%. Ketika exit flue gas temperature tinggi maka radiasi yang ditransfer ke tube boiler berkurang sehingga mengurangi kalor serap di furnace boiler. Baca detail analisis reaksi di: Shell and Tube APH: Material, Korosi dan Karakteristiknya
  • Potensi abrasi tinggi banyak terjadi di welded tube boiler (level boiler bawah yang mengerucut) sehingga direkomendasikan untuk menambah refractory sampai ketemu diatas level tersebut, dimana tidak ditemukan lagi welded joint tube yang bersentuhan langsung dengan bubbling bed material
  • Urutan batubara terbakar adalah initial heating (pyrolisis/devolatilization/demineralization) yang melepas surface moisture kemudian pelan-pelan coal hancur dan melepas mineral kemudian terbakar terbentuk arang dan abu. 
  • Beberapa Cara Mencegah Agglomeration:
  1. Penambahan aditif kimia
  2. Pre-treatment bahan bakar sebelum masuk boiler
  3. Pemilihan alternatif lain bed material
  4. Blending & mixing coal dengan biomass (co-firing), blending adalah mencampur dengan umpan yang berbeda misalnya coal + cangkang sawit/bahan organik sedangkan mixing adalah pencampuran antara bahan yang bisa menyebabkan hasil berbeda bisa karena reaksi kimia dll, seperti fuel + udara
  • Terdapat kemungkinan kesalahan yang umum terjadi di lapangan ketika pengambilan sampling uji unburned carbon (UBC), umumnya sampel diambil begitu saja dari bottom ash tanpa melakukan seleksi padahal di bottom ash terdapat 2 carbon yaitu:
  1. Unburned coal, karakteristiknya adalah jika dipegang masih keras dan menggumpal
  2. Unburned carbon ash, karakteristiknya adalah lembut karena memang sudah jadi abu
Saran sebaiknya sampel diambil dengan memilah bagian yang terlihat halus namun masih mengandung butir-butir halus. Kesalahan pengambilan sampel ini bisa berakibat nilai UBC sangat tinggi (karena memang unburned coal masih besar nilai C-nya) dan data laboratorium yang dihasilkan kurang valid jika digunakan untuk analisa pembakaran. Letak sampling yang ideal adalah: (i) unburned carbon ash di bottom ash floor furnace; (ii) unburned coal di drain sealpot cyclone
  • Standar baku rasio PA Fan : SA Fan adalah 60 : 40, namun itu untuk properties batubara desain, jika terdapat perbedaan spesifikasi maka hasil combustion tuning-lah yang dipakai
  • Menganalisis kapasitas PA Fan + SA Fan apakah lebih besar (>) atau lebih kecil (<) dengan ID Fan sangat diperlukan untuk menentukan potensi flow fluida apakah over-pressure atau under-pressure
  • Salah satu indikasi overheating boiler adalah bubbling bed material tidak sempurna karena coal size terlalu besar sehingga cenderung berada di floor furnace dan bisa menyebabkan melting % agglomeration.  
  • Agglomeration index lebih disebabkan karena coal yang dipakai adalah low rank (lignite) bersifat lengket seperti tanah liat (clay) sehingga ketika bercampur dengan pasir maka akan terjadi ikatan yang menyebabkan densitas bed material naik sehingga mengganggu bubbling dan jatuh ke floor furnace terbentuklah aglomerasi
  • Overheating juga bisa disebabkan karena pembakaran tidak sempurna karena minimnya excess air (O2). Tujuan dari excess air pada pembakaran di boiler furnace adalah untuk pembakaran sempurna menghasilkan (CO2) dan menghindarkan pembakaran tidak sempurna (CO). Sesuai reaksi:

C + O ---> CO

C + 3/2 O2 ---> CO2

Kebutuhan O2 antara kedua reaksi tersebut berbeda, dimana kebutuhan yang lebih besar adalah untuk menghasilkan CO2 dan inilah tujuan excess air. Mengapa jika menghasilkan CO tidak diinginkan di boiler furnace?? karena dari pembakaran tidak sempurna melanjutkan reaksi menuju sempurna sesuai reaksi: CO+ 1/2 O2 ---> CO2 menghasilkan panas (eksothermis) yang bisa menambah temperatur ruang bakar di zona radiasi (level 2 pada pembagian 3 level boiler yaitu: level 1-combustion, level 2-radiasi, level 3-konveksi) sehingga menyebabkan overheating. Cara mencari excess air dan kebutuhan udara pembakaran sebagai berikut:

  1. Mengetahui komposisi coal dari CoA
  2. Menghitung stoikiometri rasio
  3. Mengetahui total coal flow
  4. Menghitung stoikiometri air flow = stoikiometri rasio x total coal flow
  5. Menghitung excess air = [oksigen terbaca di furnace / (20.9-oksigen terbaca di furnace)] x 100%
  6. Total air flow = [100%+ excess air] x stoikiometri air flow

  • Parameter operasi utama di boiler adalah velocity dan residence time, dimana velocity CFB boiler berkisar ± 6 m/s dan residence time berkisar 1-2 s di radiation zone. Velocity & residence time dihitung hanya antara combustion zone (level 1) sampai radiation zone (level 2), sehingga apabila masih terdapat panas berlebih di convection zone (level 3) maka itu adalah heat-loss karena fase sudah superheated yang tidak memerlukan panas lagi
  • Fluidisasi di CFB boiler ada 2 yaitu: (i) furnace boiler karena adanya PA/SA Fan; (ii) seal pot cyclone karena adanya return fan/seal fan/HP blower
  • Standar asumsi persentase ash di boiler adalah bottom ash : fly ash = 80 : 20
  • Ketika kandungan alkali di CoA bahan bakar >9% maka bisa dipastikan terdapat potensi agglomeration yang besar
Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2021). Catatan Lengkap Pembakaran Batubara (Coal Combustion) Based Experience di Workshop CFB Boiler, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

Referensi:
[1] Feriyanto, Y.E. (2021). Workshop CFB Boiler. Surabaya
[2] Basu, P. (2015). Circulating Fluidized Bed Boiler, Design Operation and Maintenance. Canada

Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

Batasan Parameter Standard Air Baku PLTU

Diposting oleh On Sunday, March 28, 2021

Aliran proses yang umum ada di PLTU sebagai berikut: 

Air laut-Bak pengendapan/clarifier/sedimentation pond-Multi media filter (MMF)-Desalination (RO/MSF/MED)-Demineralization (mixed bed/single bed)-Condensate Water-Outlet deaerator/lnlet economizer-Boiler water/steam drum-Saturated steam/outlet drum-Superheated steam

  • Bak Pengendapan/Clarifier, berfungsi menurunkan kadar lumpur/suspended solid. Parameter standar umum outlet clarifier adalah:
  1. Turbidity, <5 NTU
  2. Total Suspended Solid (TSS), <10 ppm
  • Multi-Media Filter (MMF)/Activated Carbon/Sand Filter. Parameter standar umum outlet MMF adalah:

    1. Turbidity, <1 NTU
    • Desalination, berfungsi meminimalisir kandungan garam dengan prinsip filter membrane untuk RO dan distilasi untuk MED. Parameter standar umum outlet desalination adalah:
    Inlet SWRO
    1. Turbidity, <1 NTU
    2. Free Chlorine, <100 ppb
    3. Silt Density Index (SDI)<5
    Outlet SWRO
    1. pH, 6-8
    2. Conductivity, <800 µS/cm
    Outlet BWRO
    1. pH, 6-8
    2. Conductivity, <20 µS/cm
    • Demineralization, berfungsi meminimalisir kandungan mineral ion. Parameter standar umum outlet demineralization adalah:
    1. pH, 6-8
    2. Specific Conductivity, <1 µS/cm
    3. Silica (SiO2), <20 ppb
    4. Chloride (Cl-), <100 ppb
    • Condensate Water, air keluaran condenser yang merupakan kondensasi steam turbine menjadi cair. Parameter standar umum outlet condensate water adalah:
    1. pH, 9-9.6 (TD), 8.8-9.3 (AM/BJ)
    2. Conductivity/Specific Conductivity, <11 µS/cm
    3. Cation Conductivity<0.3 µS/cm (PCT)
    4. Chloride (Cl-), <100 ppb
    5. Silica (SiO2), <15 ppb (TD), <20 ppb (BK)
    6. Dissolved Oxygen (DO), <50 ppb
    7. Hardness Water, <1 ppb (air laut), <40 ppb (air sungai)
    8. Iron (Fe), <20 ppb
    • Deaerator/Economizer, deaerator berfungsi menurunkan dissolved gas sebelum masuk boiler, parameternya sama antara outlet deaerator & inlet economizer sebagai berikut:
    1. pH, 9-9.6
    2. Specific Conductivity, <11 µS/cm
    3. Iron (Fe), <30 ppb (TD), <20 ppb (BT)
    4. Hydrazine (N2H4), 10-30 ppb (TD), 30-50 ppb (AM)
    5. DO, <7 ppb
    6. Silica (SiO2), <20 ppb
    • Steam Drum/Boiler Water, air yang sudah dipanaskan dan treatment di steam drum namun masih dalam fase semi liquid-vapor (saturated steam) untuk siklus kembali ke boiler furnace (downcomer steam drum). Parameter standar umum boiler water adalah:
    1. pH, 9.2-10.5
    2. Specific Conductivity, <150 µS/cm (TD), <100 µS/cm (BK), <60 µS/cm (air sungai)
    3. Phospate (PO4), 0.5-3 ppm (TD), 2-10 ppm (BK)
    4. Chloride (Cl-), <2 ppm (TD), <1 ppm (BK)
    5. Silica (SiO2), <2000 ppb (TD), <800 ppb (AM)
    6. Iron (Fe), <250 ppb
    1. pH, 9-9.6
    2. Specific Conductivity, <11 µS/cm (TD), <15 µS/cm (BK)
    3. Silica (SiO2), <20 ppb
    4. Iron (Fe), <20 ppb
    5. Chloride (Cl-), <0.1 ppm
    Penamaan anion-cation conductivity dan spesific conductivity mengikuti hal berikut:
    • Anion conductivity yang sebenarnya adalah anion exchanged conductivity ---> sampel air dilewatkan resin bed anion exchanger (muatan negative) sehingga muatan ion yang tertangkap dari sampel air adalah positif seperti sodium (Na+) dan potassium (K+)
    • Cation conductivity/Acid conductivity yang sebenarnya adalah cation exchanged conductivity --->  sampel air dilewatkan resin bed cation exchanger (muatan positif) sehingga muatan ion yang tertangkap dari sampel air adalah negatif seperti chloride (Cl-), sulphate (SO42-)
    • Specific conductivity artinya mengukur seluruh ion (positif dan negatif) pada sampel air. Umumnya penyebutan cukup conductivity atau total conductivity

    Ingin Konsultasi dengan Tim Expert Website Silakan, KLIK

    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2021). Batasan Parameter Standard Air Baku PLTU, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Referensi:
    [1] Feriyanto, Y.E. (2015). Best Practice Experience in Power Plant. Surabaya

    Unburned Carbon (UBC) Pembakaran Batubara dan Uji Loss On Ignition (LOI)/Hilang Pijar

    Diposting oleh On Saturday, March 06, 2021

    Unburned Carbon/Hydrocarbon (UBC) adalah karbon/bahan bakar yang tidak habis terbakar pada proses pembakaran. Semakin besar nilai UBC maka semakin tidak efisien suatu bahan bakar, karena banyak energi yang masih belum terkonversi. Artikel kali ini difokuskan pada unburned carbon di PLTU, dimana banyak kandungannya pada fly ash-bottom ash (FABA). Nilai unburned carbon yang tinggi tidak bagus untuk efisiensi proses pembakaran dan juga untuk lingkungan seperti bisa menyebabkan polusi groundwater, polusi udara, permasalahan pernafasan.

    Coal ash terbagi menjadi 3 bagian yaitu: slag (kerak), fly ash & bottom ash. Komponen utama fly ash adalah unburned carbon & spherical ash (glass cenosphere, magnetic particle & Si-Al ash) [Xing et al, 2019]

    Unburned Carbon tidak bisa sepenuhnya dihilangkan dan hanya bisa diminimalisir, seperti pada jurnal Gurusingam et al (2017) dilaporkan bahwa pada fly ash kandungan UBC bisa diminimalisir sampai kandungannya menjadi 2-5% dari total %wt fly ash. Xing et al (2019) menuliskan kandungan carbon pada fly ash (UBC) antara 2-12% dengan detail untuk fly ash grade I nilai UBC <5%, berikut kutipannya:

    Berdasarkan handbook Basu (2015), unburned carbon untuk PC boiler sebesar 0.25% sedangkan CFB sebesar 0.5%. Kutipannya sebagai berikut:

    Gurusingam et al (2017) melakukan simulasi pembakaran pada soFtware Computational Fluid Dynamic (CFD) dengan variabel %excess O2 disimpulkan bahwa dengan penambahan 5.2% excess O2 bisa menurunkan 32% ppm unburned carbon. Mengapa %excess Oberpengaruh terhadap UBC???, bisa dibaca detail artikel Feriyanto (2020).

    Proses terbentuknya unburned carbon menurut Xing et al (2019) sebagai berikut:

    Terdapat 3 tahapan yaitu:
    • Drying & Preheating
    Awal mula moisture content coal menguap karena suhu pemanasan yang semakin naik, ini juga diikuti oleh penguapan volatile matter batubara
    • Combustion
    Batubara terbakar melibatkan kontak antara volatile matter + oksigen sehingga terjadi pembakaran awal partikel karbon dan pembakaran sempurna fixed carbon. Fixed carbon inilah yang memberikan energi panas boiler system.
    • Discharging
    Setelah waktu pembakaran berjalan maka ash content terus bertambah & oksigen terus berkurang sehingga mengurangi daya bakar coal dan menyebabkan unburned carbon yang kemudian keluar lewat cerobong. 

    Kandungan pada fly ash sebagai berikut: [Jdrusik and Wierczok, 2011]; [Grochowiak et al, 2004]


    Penambahan kandungan unburned carbon di fly ash boiler dalam uji secara analis setara dengan Loss-on Ignition (LOI) yaitu bahan bakar yang lolos dari pembakaran (tidak terbakar) [David and Kopac, 2017]. Menurut Bjurstrom et al (2014), LOI adalah metode untuk menentukan apakah pembakaran menyisakan residu yang tidak bisa terserap oleh waterwall boiler system (water).
    Berikut langkah-langkah uji LOI atau hilang pijar: [Feriyanto, 2016]
    Peneliti seperti Bjurstrom et al (2014) memaparkan bahwa temperatur untuk uji LOI bisa berbeda-beda tergantung bahan bakar seperti:
    • Biomass (550 oC), alasan biomass dibuat temperatur rendah adalah agar potassium (K) dan chlorine (Cl) tidak dihitung sebagai oxidisable carbon
    • Coal (750 oC)
    • Coal (950 oC)
    Metode yang hampir sama juga terdapat pada jurnal penelitian Yang et al (2020) sebagai berikut:
    Xing et al (2019) menuliskan penyebab umum dari unburned carbon sebagai berikut:
    Unburned carbon terbanyak ada pada fly ash dibandingkan bottom ash. Faktor yang mempengaruhi level UBC di fly ash adalah [1] desain sistem pembakaran, [2] kondisi operasi. Desain pembakaran meliputi: [i] tipe pembakaran, [ii] jumlah burner, [iii] kebutuhan udara/oksigen pembakaran (teknologi pembakaran), [iv] pembakaran sisa, [v] tekanan & temperatur pembakaran, [vi] ketersediaan oksigen, dan [vii] furnace heat loading. Selain itu juga ada pengaruh dari karakteristik batubara seperti coal rank, komposisi coal (volatile matter, moisture content), size batubara, coal car properties, coal mineral matter, coal blending [Xing et al, 2019].
    Nilai Loss On Ignition (LOI)/hilang pijar tergantung pada ash batubara dan jika dirunut maka tergantung pada tipe batubara seperti: [i] lignite ash (LOI 0-5%), [ii] sub-bituminous ash (LOI 0-3%), dan [iii] bituminous ash (LOI 0-15%) [Xing et al, 2019].
    Berdasarkan tabel tersebut terdapat perbedaan untuk kadar LOI berdasarkan tipe boiler yaitu pulverizer fuel (PF), nilai LOI sebesar 0.7-15 dan circulating fluidized bed (CFB), nilai LOI sebesar 2-12.
    Terdapat pendekatan perhitungan dari EPRI "Heat Rate Improvement" berikut kutipannya:
    Beberapa penyebab tingginya unburned carbon (UBC) di PLTU adalah:
    • Kurangnya excess air, hal ini berdampak pada pembakaran yang tidak sempurna pada hydrocarbon (batubara) sehingga masih meninggalkan carbon yang tidak habis terbakar
    • Sistem mixing antara bahan bakar dan udara yang kurang optimal di furnace, hal ini bisa karena letak inlet udara bakar atau besarnya bukaan damper (PA/SA Fan) yang kurang pas sehingga harus dilakukan combustion tuning
    • Untuk tipe boiler PF bisa karena setting size pulverizer yang tidak standar,  sehingga batubara yang berukuran terlalu besar tidak habis terbakar sampai waktu pembakarannya habis
    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2021). Unburned Carbon (UBC) Pembakaran Batubara dan Uji Loss On Ignition (LOI)/Hilang Pijar, Best Practice Expereince in Power Plant. www.caesarvery.com. Surabaya

    Referensi:

    [1] Feriyanto, Y.E. (2020). Prinsip Pembakaran Hydrocarbon untuk Mencapai Efisiensi Tinggi di PLTU, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    [2] Feriyanto, Y.E. (2016). Uji dan Analisa LOI/Hilang Pijar pada Bed Sand CFB, Best Practice Experience in Power Plant. Surabaya

    [3] Gurusingam, P., Ismail, F.B., Gumnasegaran, P., and Sundaram, T. (2017). Intelligent Monitoring System of Unburned Carbon of Fly Ash for Coal Fired Power Plant Boiler. MATEC Web of Conferences, Vol 131-02003

    [4] Jdrusik, M and Wierczok, A. (2011). The Influence of UBC Particles on ESP Collection Effieciency. J. of Physics, Vo. 301, 012009

    [5] David, E., and Kopac, J. (2017). Functional Carbon Structures Derived from UBC Contained in Fly Ash. Material Today:Proceeedings, Vol. 7, 817-827

    [6] Yang, Z., Chang, G., Xia, Y., He, Q., Zeng, H, Xing, Y., and Gui, X. (2020). Utilization of Waste Cooking Oil for Highly Efficient Recovery of  Unburned Carbon from Coal Fly Ash. J. of. Cleaner Production

    [7] Xing, Y., Guo, F., Xu, M., Gui, X., Li, H., Li, G., Xia, Y., and Han, H. (2019). Separation of Unburned Carbon from Coal Fly Ash: A Review. J. of Powder Technology, Vol. 353, pp. 372-384

    [8] Bjurstrom, H., Lind, B., and Lagerkvist, A. (2014). Unburned Carbon in Combustion Residues from Solid Biofuels. J. of Fuel, Vol. 117, pp. 890-899

    [9] Grochowiak, K.S., Golas, J., Jankowski, H., and Kozinski, S. (2004). Characterization of the Coal Fly Ash for the Purposes of Improvement of Industrial On-Line Measurement of Unburned Carbon Content. J. of Fuel, Vol. 83, pp. 1847-1853

    [10] Basu, P. (2015). Circulating Fluidized Bed Boiler, Design, Operation and Maintenance. Canada

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

    Karakteristik Pasir (Bed Sand Material) dan Agglomeration pada Boiler CFB

    Diposting oleh On Monday, February 22, 2021

    Pada boiler tipe CFB, pasir memiliki peranan yang vital dalam pembakaran. Namun melangkah sejauh ini penulis di bidang enjiniring pembangkitan sering menemui dan mengkaji RCFA tentang pengaruh pasir terhadap agglomeration, abrasion, corrosion dan fluktuatif temperatur operasi boiler. Pada dasarnya pasir (bed sand) boiler CFB yang direkomendasikan adalah yang tahan terhadap temperatur tinggi pembakaran (operasi boiler CFB umumnya di rentang 850-900 oC), sehingga pasir harus memiliki melting point diatas itu. Penulis juga pernah melakukan uji beberapa karakteristik pasir menggunakan teknologi X-ray Diffraction (XRD) sebagai berikut:


    Dengan menggunakan metide spectrofotometri AAS didapatkan sebagai berikut:

    Dari pengujian tersebut bisa diketahui bahwa komposisi dominan pasir adalah: silica (SiO2) kemudian diikuti komposisi kecil seperti alumunium oxide (Al2O3), Fe2O3 dan CaO. Silica memiliki melting point yang cukup tinggi yaitu 1450 oC. sehingga ketika digunakan pada pembakaran di boiler CFB aman dari potensi agglomerasi. Parameter lain yang harus juga dilihat adalah size dan hardness pasir, dimana size disesuaikan dengan standar dari manual book umumnya yang pernah penulis temukan adalah 0-1 mm. Hardness inline dengan kadar silica dalam pasir, dimana jika terlalu tinggi maka pasir sangat keras dan bersifat abbrasive terhadap refractory dan tube boiler. Pada boiler CFB, size yang terlalu besar kurang bagus karena sulit untuk bubbling sehingga potensi high temperature pada bottom boiler bisa terjadi dan juga tidak bagus jika terlalu kecil karena akan mudah sekali terhembus udara dan menuju ke cyclone akibatnya akan high temperature pada upper boiler.

    BACA JUGA: Macam-Macam Boiler PLTU

    Selain permasalahan diatas, terdapat hal yang cukup sering terjadi dan vital berpengaruh pada operasional di pembangkitan yaitu agglomerasi/penggumpalan pada bottom boiler/bottom ash. Untuk permasalahan ini harus dilihat secara overall fuel system yang terlibat di boiler CFB seperti batubara, pasir dan limestone (optional). Bottom ash adalah sisa pembakaran boiler yang terletak di dasar dan secara periodik dilakukan drain bottom ash untuk membuang fuel system yang tidak habis terbakar. Mengapa terdapat bottom ash?? di setiap proses pembakaran yang melibatkan macam-macam fuel system pasti tidak 100% terkonversi menjadi energi dan umumnya 75-85% saja sudah sangat bagus sehingga terdapat sisa fuel system yang tidak habis terbakar seperti batu, kerikil, batubara keras, tanah atau lapisan atas dari batubara tipe low rank coal dan materi unburned carbon lainnya. Komposisi batubara bisa dilihat di artikel berikut: Certificate of Analysis (CoA) Batubara Uji Laboratorium
    Pada CoA batubara yang berpengaruh besar terhadap agglomerasi adalah kandungan alkali seperti K2O dan Na2O. Agglomerasi dibedakan menjadi 2 yaitu: [Mettanant et al, 2009]
    1. Defluidization & Sintering Induced Agglomeration, dipengaruhi karena terhambatnya proses fluidisasi di bed furnace bisa disebabkan karena water content pada fuel atau tekanan udara yang kurang. Hal ini mengakibatkan overheating pada spot bottom boiler sehingga tercapai melting point temperature bahkan diatas titik leleh fuel system misalnya saja potassium salt meleleh pada 754 oC [Basu, 2006]. Sintering adalah ikatan kimia sementara antara partikel yang disebabkan oleh difusi molekular pada interface partikel dan HANYA TERJADI ketika temperatur diatas temperatur penggumpalan mula bed partikel yang digunakan [Siegell, 1976].

    2. Melt Induced Agglomeration, terjadi karena kandungan kimia pada fuel system mencapai melting point-nya sehingga terjadi penggumpalan pada bottom boiler. Basu (2006) pernah melakukan eksperimen sebagai berikut:
    Produk dari reaksi silica + alkali berupa eutectic mixture of silicate memiliki melting point 874 oC, sehingga ketika boiler furnace dioperasikan pada max 900 oC memiliki potensi untuk agglomerasi ketika batubara memiliki kandungan alkali yang besar (K2O dan Na2O). Umumnya untuk umpan batubara kecil kemungkinan terjadi namun tidak untuk biomass.
    Hulkkonen et al (2003) melakukan publikasi untuk menentukan potensi agglomerasi suatu fuel system yang dinamakan "Agglomeration Index" seperti berikut:
    Diketahui bahwa Gol IA-Alkali (K, Na) adalah PENYEBAB aglomerasi sedangkan Gol IIA-Alkali Tanah (Ca, Mg) adalah PENCEGAH aglomerasi. Berikut alternatif yang bisa digunakan untuk menghindari agglomerasi:
    Bisa ditarik kesimpulan bahwa penggunaan pasir efektif untuk menghindari agglomerasi adalah yang dominan kandungan alumina ore/bauxite dan juga manganese ore. Sedangkan jika pasir yang dominan adalah silica/quartz maka bisa ditambahkan dolomite atau batu kapur. Namun juga terdapat pertimbangan, mengapa boiler CFB yang beroperasi di Indonesia kebanyakan tidak memakai umpan limestone/batu kapur ?? karena umpan batubara yang dipakai kebanyakan adalah tipe rendah/low rank coal, dimana ini adalah batubara muda yang letaknya paling atas sehingga masih bersentuhan dengan tanah dan kapur sehingga kandungan kapur masih cukup tinggi.

    Penulis pernah melakukan uji bottom ash menggunakan XRD sebagai berikut: [Feriyanto, 2020]

    Analisa:
    • Kandungan silica (SiO2) adalah chemical utama pada pasir dan normal ada di bottom ash dengan %komposisi tersebut
    • Al2O3 bisa berasal dari batubara + pasir, dengan tidak ada dampak penyebab agglomerasi pada pembakaran di furnace [Mettanant et al, 2009].

    • NaAlSi2O6 adalah senyawa kompleks yang merupakan gabungan antara Na + Al + 2 SiO2 + O2 . Ketika semua unsur bereaksi yaitu silica (SiO2) + alkali (Na/K) maka akan terbentuk eutectic mixture of silicate (NaSiO2) dan berdasarkan uji XRD ini terjadi di sampel tersebut. Tipe agglomerasi yang terbentuk adalah "melt-induced" yang terjadi pada temperatur tinggi >874 oC [Mettanant et al, 2009].

    Rekomendasi:

    • Menambahkan serbuk batu kapur (CaCO3) atau dolomit (CaO-MgO) pada proses pembakaran di furnace boiler. Ini berfungsi sebagai penghambat terbentuknya agglomerasi [Mettanant et al, 2009].

    • Mengatur pola operasi dengan menjaga temperatur bed furnace <874 oC (berdasarkan hasil uji XRD bottom ash boiler). Hal ini karena alkali silicate (Na/K + SiO2) memiliki titik leleh yang rendah yaitu NaSiO2 pada 874 oC dan KSiO2 pada 754 oC [Basu, 2006].
    • Untuk kejadian ini dimungkinkan terjadi melt-induced agglomeration karena ditemukan senyawa eutectic mixture of silicate (NaSiO2) pada bottom ash
    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2020). Karakteristik Pasir (Bed Sand Material) dan Agglomeration pada Boiler CFB, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Referensi:
    [1] Feriyanto, Y.E. (2020). Uji Laboratoium Bottom Ash Using XRD, Best Practice Experience in Power Plant. Surabaya
    [2] Feriyanto, Y.E. (2020). Certificate of Analysis (CoA) Batubara Uji laboratorium, Best Practice Experience in Power Plant. Surabaya
    [3] Mettanant, V., Basu, P., and Butler, J. (2009). Agglomeration of Biomass Fired Fluidized Bed Gasifier and Combustor. J. of Chem. Eng, Vol. 87

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

    Fungsi Limestone/Kapur (CaCO3) pada Boiler CFB

    Diposting oleh On Tuesday, October 27, 2020

    Circulating Fluidized Bed (CFB) boiler adalah salah satu tipe boiler yang umum digunakan di PLTU. Bahan yang digunakan pada boiler ada 3 macam yaitu batubara, pasir dan kapur/limestone. Penjelasan fungsi pasir, bisa dibaca detail di "Macam-Macam Boiler".

    Kapur/Limestone (CaCO3 atau CaO) di CFB boiler difungsikan untuk beberapa sebab yaitu (i) sebagai sorbent (penyerap) pada proses desulfurization yaitu pengikat kandungan gas SO2, karena didalam batubara terdapat kandungan  beberapa unsur salah satunya sulfur (S). Baca detail kandungan batubara di "CoA Batubara Uji Laboratorium". Ketika batubara dibakar akan bereaksi sebagai berikut:

    S + O2 ---> SO

    (ii) sebagai reducing agglomeration yang disebabkan oleh keberadaan K2O dan Na2O [Mettanant et al, 2009], berikut kutipannya:

    CFB boiler didesain bisa sirkulasi terus-menerus dengan adanya cyclone separator sehingga campuran gas CO2 dan SO2 akan terus sirkulasi dan sulit dikendalikan gas tersebut sehingga dalam aplikasinya tidak dipasang desulfurization seperti Flue Gas Desulfurization (FGD) yang umumnya terdapat di boiler tipe pulverizer (lebih detail bisa dibaca di "Teknik Pengendalian Gas SO2"). Aplikasi yang diterapkan di CFB boiler adalah mengikutkan langsung kapur ke dalam pembakaran. Menurut jurnal penelitian Diego et al (2018) terdapat 4 faktor yang mempengaruhi sulfation reaction yaitu:

    1. Temperatur
    2. Parsial gas CO
    3. Konsentrasi SO2
    4. Ukuran partikel

    Reaksi sulfation (pembentukan sulfate) bisa terjadi secara langsung (sorbent CaCO3) dan tidak langsung (mulai dari CaCO3 menjadi CaO terlebih dahulu), hal ini tergantung oleh 2 faktor yaitu temperatur dan parsial gas CO2

    Reaksi direct terjadi ketika parsial gas CO2 lebih besar dari tekanan udara pembakaran sehingga bisa mengalami 2 fase reaksi yaitu melewati proses calcination atau non-coalcination. Proses non-calcination terjadi ketika temperatur sistem dibawah temperatur calcination, sesuai reaksi berikut: (Diego et al., 2018)

    CaCO3 + SO2 + ½ O2 <---> CaSO4CO2 (proses desulfurization)

    Reaksi indirect terjadi karena temperatur sistem diatas temperatur calcination, reaksi sebagai berikut: (Diego et al., 2018)

    CaCO<---> CaO + CO2  (proses calcination)

    CaO + SO2 + ½ O2 <---> CaSO4 (proses desulfurization) 

    Batu kapur (CaO) ketika terbakar bersama batubara di boiler dan kontak dengan gas CO2 mengalami reaksi calcination membentuk CaCOdengan reaksi endothermik (menyerap panas dari luar). Berikut persamaan kesetimbangan reaksinya:

    Persamaan tersebut bisa dilihat bahwa faktor reaksi dipengaruhi oleh temperatur dan parsial gas CO2Calsium  dari CaCO3 sebagai sorbent digunakan untuk mengikat SOpada temperatur tinggi 925-950 oC untuk CFB boiler dan untuk konvensional pembakaran pada 850 oC
    Failure yang sering terjadi di boiler CFB adalah slagging (pengerakan keras di dinding sisi luar tube boiler) dan agglomerasi (penggumpalan ash sangat keras sisa pembakaran batubara). Menurut Rajavel et al., (2013) sebagai berikut:
    Agglomerasi bisa terjadi karena reaksi hydration kemudian diikuti carbonation. Reaksi hydration sebagai berikut:

    CaO + H2O <---> Ca(OH)2

    Kemudian diikuti reaksi carbonation sebagai berikut:

    Ca(OH)2 + CO2 <---> CaCO3 + H2O

    Reaksi keduanya terjadi pada temperatur  450 oC. Disisi lain, agglomerasi juga bisa terjadi ketika batubara banyak mengandung unsur K, Na dan V namun ketika kandungan unsur tersebut rendah (bisa dilihar dari CoA laboratorium) maka bisa dipastikan agglomerasi melewati 2 reaksi diatas.

    Pengalaman kami sendiri menguji kerak yang ada pada sisi luar tube boiler menggunakan X-Ray Diffraction (XRD) didapatkan kandungan dominan adalah CaCOdan CaO padahal boiler tidak menggunakan media kapur. Jika dirunut asal calsium maka didapatkan data bahwa penggunaan batubara CFB boiler adalah tipe low rank, dimana batubara ini masih muda yang letaknya masih beberapa meter dari lapisan permukaan tanah sehingga masih mengandung senyawa calsium. Boiler yang bahan bakar mengandung kapur yang cukup banyak seperti pada low rank coal tersebut bisa digunakan di CFB boiler tanpa penambahan kapur dari luar dan memang terbukti efektif dalam minimalisir gas SO2. Namun juga memiliki dampak yang cukup berarti yaitu mudah sekali agglomerasi sehingga bottom ash harus sering dilakukan tindakan drain agar tidak menjadi penyumbat aliran udara dari bawah.

    Kutip Artikel sebagai Referensi (Citation)

    Feriyanto, Y.E. (2020). Fungsi Limestone/Kapur (CaCO3) pada Boiler CFB. www.caesarvery.com. Surabaya

    Referensi:
    [1] Black & Veatch. (1996). Power Plant Engineering, Coal & Limestone Handling. Handbook Springer
    [2] Diego, L.F et al. (2018). Characterization of a Limestone in a Batch Fluidized Bed Reactor for Sulfur Retention Under Oxy-Fuel Operating Conditions
    [3] Rajavel, M et al. (2013). Influence of Sorbent Characteristics on Fouling and Deposition in CFB Boiler Firing High Sulfur.
    [4] Feriyanto, Y.E. (2020). Best Practice Experience in Power Plant, Surabaya

    Ingin Konsultasi dengan Tim Expert Website, Silakan Hubungi KLIK

    Pengukuran Silt Density Index (SDI) Berdasarkan Standard ASTM D4189-82

    Diposting oleh On Saturday, October 17, 2020

    Silt Density Index (SDI) adalah parameter yang digunakan untuk mengukur tingkat fouling air umpan yang umumnya akan mengalir melewati membrane Reverse-Osmosis (RO). Dengan kata lain, SDI adalah tingkat ukuran kemungkinan membrane akan buntu oleh suspended solid. Fouling adalah istilah pencemaran/pengendapan/pembuntuan yang umum digunakan di RO system, walaupun sebenarnya istilah ini sama dengan scaling, slagging dan deposit. Untuk detail baca di "Arti Istilah-Istilah Mirip di Teknik". 

    4 tipe fouling yaitu: (i) scale, (ii) silt (particular), (iii) biofouling (bacteria), dan (iv) organic fouling (oil & grease). Silt particular bisa bersumber dari organic colloid, iron corrosion product, precipitated iron hydroxide, alga, suspended solid dan dissolved solid.

    SDI standar yang diterapkan di PLTU adalah untuk umpan air laut SDI < 5 dan umpan air payau (brackish water) SDI < 4 dengan syarat parameter turbidity air umpan yang masuk SDI test kit < 1 NTU dengan temperatur yang tetap dijaga konstan karena perubahan 1oC bisa menyebabkan perubahan flow sebesar 3%. Berikut gambar SDI test kit:

    Gambar 1. SDI Test Kit Skema
    Gambar 1. SDI Test Kit Skema


    Inti dari SDI test adalah melewatkan air umpan dengan pressure dijaga tetap sesuai persyaratan yaitu 30 ± 1 psi pada kertas filter 0.45 ± 0.02 µm. Daya tembus air dalam menghasilkan per volume per waktu itulah yang akan dihitung.
    Berikut prosedur detailnya:
    1. SDI test kit di pasang sesuai Gb 1 dan memastikan material logam tahan terhadap korosi dan bahan kimia seperti bahan dari SS atau plastik dan menghindarkan penggunaan CS
    2. Menyiapkan pressure regulator dengan kapasitas max 50 psi karena dalam aplikasinya digunakan 30 ± 1 psi. Ketika aliran umpan secara normal tidak mencapai 30 psi maka diperlukan booster pump agar tercapai pressure tersebut
    3. Menyiapkan kertas filter, diameter 25/47/90 mm dengan pore size 0.45 ± 0.02 µm. Sebelum filter dipasang pastikan line sudah di-drain untuk membuang sisa kotoran yang mungkin masih tersangkut. Kemudian memasang O-ring pada wadah kertas filter dan mengencangkan
    4. Menyiapkan beaker glass 500 mL (bisa dipakai volume lain jika terdapat syarat yang belum terpenuhi seperti detail dibawah)
    5. Menyiapkan stopwatch
    6. Memutar ball valve dan mengisi beaker glass 500 mL sampai terisi penuh dan mencatatnya. Waktu ini digunakan sebagai blanko (pembanding kenormalan ketika filter sudah terpasang). Menutup ball valve
    7. Memastikan semua sudah terpasang tanpa ada kebocoran sesuai Gb 1
    8. Memutar ball valve dan mengisi 500 mL beaker glass serta mencatat waktu yang dibutuhkan untuk mengisi penuh sebagai (t1 = initial time). Nilai t1 seharusnya adalah ±10% dari waktu ketika aliran air tidak diberi filter (waktu blanko). Jika t1 < 90% dari waktu ketika aliran air tidak diberi filter itu bisa dipastikan filter telah jebol dan jika t1 > 110% maka beaker glass yang disarankan adalah 250 mL atau 100 mL (karena terlalu jauh perbedaan waktunya)
    9. Ketika menggunakan volume beaker glass yang berbeda maka semuanya harus distandarkan terlebih dahulu agar sama mulai dari standard awal (blanko)
    10. Mengukur waktu lanjutan setelah initial time (ti) umumnya dimulai dari 15 menit. Ketika sudah 15 menit, melakukan pengisian beaker glass 500 mL (misalnya) dan mencatat waktu sebagai final time (tf)
    11. Waktu bisa diubah menjadi 5 atau 10 menit ketika persyaratan %P30 >75% namun jika <75% maka waktu 15 menit bisa diterima
    12. Melakukan perhitungan %P30 dan SDIt seperti formula dibawah ini:
    Setelah didapatkan data SDI, maka bisa disimpulkan sebagai berikut:
    Sebagai catatan, ketika temperatur air umpan berbeda, kertas filter berbeda pabrikan maka nilai SDI tidak bisa dibandingkan head to head dan nilai SDI yang didapatkan ini hanya sebagai capture di waktu tersebut saja.

    Kutip Artikel sebagai Referensi (Citation)
    Feriyanto, Y.E. (2020). Pengukuran Silt Density Index (SDI), Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Referensi:
    [1] Feriyanto, YE. (2020). Best Practice Experience in Power Plant. Surabaya

    Ingin Konsultasi dengan Tim Expert Website, Silakan Hubungi KLIK