Trending Topik

Olympus, Feriyanto, Y.E

Diposting oleh On Friday, September 23, 2022

  • Klik kanan bawah ikon olympus-Configure-address 192.168.0.1 (muncul tulisan there is no problem)-Ikon olympus refresh-Configure-Cek apakah sudah OK (tanda Bootp & FTP warna hijau)
  • Klik tube ECT/RFT-Setup-Wizard-"The current configuration has been modified....-NO-Isi name (PLTU...)-Description (Condenser...)-Pilih technology (ECT...)-Create....(50:53)/(54:19)
  • Isi material, thickness....(Bobbin-Internal-4 pin)-Next (pilih frequency)-SS 404, 217, 108,22
  • Klik analysis setup-setting semua cacat di kalibrator, bisa tambahkan defect yang belum ada misalnya klik Add-(big hole-out (cara pilih double klik)-100%; OD groove-out-40)- NAMUN INI BELUM MENANDAI KALIBRATOR-OK
  • Kalau ada yang defect kalibrator banyak misalnya: 4x Flat Bottom Hole (FBH)
  • Klik Depth Curve-INI SETTING ABSOLUT (untuk big defect/cacat melingkar/melebar/luas-KODE BIG HOLE, OD/ID GR) dan DIFFERENTIAL (small defect/cacat per titik/pittng-KODE FLAT BOTTOM HOLE 20, 40, 60, 80, 100%)
  • Nilai yang sudah ada: A90, D90, MIX1 dengan keterangan theta/depth (untuk semuanya)-Bisa tambahkan depth curve, klik Add-tambah D180 (keterangan sama dengan existing, curve type theta/depth)-OK (JADI TAMPILAN NANTI DI KOTAK ADA 4 PEAK TSB)
  • Tambahkan lagi yang belum ada, klik add pilih A90 (keterangan berbeda dg existing, curve type V/depth dan extension V-OD)-OK (V=voltage)
  • A90 (absolute for big defect) ada 2 yaitu:
  1. A90 theta/depth dipilih/checklist OD GR 20%; OD GR 40%; OD GR 60%, ID GR 10% dan BIG HOLE 100%-YANG LAIN UNCHECKLIST
  2. A90 V/depth, V-OD hanya dipilih OD-GR saja semuanya-KARENA extension V-OD untuk OD saja
  • D180 theta/depth dipilih HOLE 100%; FBH 80%; FBH 60%; FBH 40% dan ID GR
  • D90 theta/depth dipilih mirip D180-SEMUA OD GR TIDAK DIPILIH namun ID GR dipilih
  • MIX1 (utk menghilangkan sinyal tube support shg yang ada hanya defect)-MIRIP D90
  • Langkah uji kalibrator: klik ikon timbangan (balance the unit)-klik start dan tarik maka sinyal akan tampil-klik stop (1:20:20)
  • Lakukan zoom sinyal dengan drag mouse
  • MENANDAI WALL LOSS & PEAK-klik simbol system callibration (dekat simbol timbangan)-menandai nilai defect, dimulai dengan mengarahkan peak sinusoidal big hole 100%-klik record dst....
  • Setiap manandai nilai-nilai voltage bisa diganti, semula 5 V arah panah menyamping diganti dengan 2.5 V & panah keatas (berlaku untk D90 & A90)- Setelah semus tertandai maka klik callibrate
  • Langkah analisa kurva, peak bentuk besar indikasi cacat melingkar (OD/ID groove, big hole), sedangkan peak kecil indikasi FBH & small hole
  • Ukuran peak bisa diperbesar (dengan memperkecil Voltage), begitu juga sebaliknya
  • Rata-rata pengukuran menggunakan voltage 2.5 V, dan ciri khas cacat besar misalnya OD/ID groove/big hole memiliki voltage >1 V sedangkan kalau kecil disekitaran 1 V
  • Buat folder terlebih dahulu (nantinya akan diambil di proses selanjutnya)
  • Klik Setup-Operation-Inspection-Browse ambil folder-Browse lagi tempatkan di folder dan beri nama-Browse lagi tempatkan di folder dan beri nama
  • (1:15:51) Klik Inspect
  • Memulai ambil data
  • Analisa, penggunaan D90 atau A90, ketika D90 dan V<1 maka memilih D90 atau D180 dipilih voltage yang terbesar) sedangkan ketika D90 dengan V>1 dan maximum rate (MR) <40 maka memilih A90 sedangkan jika D90 dengan V>1 dan mr >40 maka dipilih A90-OD




Macam-Macam Energy Recovery Devices (ERD) Turbocharger ERI SWRO BWRO Booster Pump Reverse Osmosis

Diposting oleh On Friday, September 02, 2022

Energy Recovery Devices (ERD) adalah peralatan yang memanfaatkan energi buang untuk membantu kinerja agar lebih efisien. ERD banyak diterapkan pada Reverse-Osmosis (RO) pump dengan memanfaatkan reject water (concentrate/brine) untuk membantu tekanan pada feed water. Latar belakang munculnya teknologi ERD karena biaya operasional terbesar RO adalah konsumsi energi sedangkan biaya ganti membrane, chemical dan upah buruh tergolong rendah. 

Berdasarkan Prinsipnya ERD dibagi menjadi 3 yaitu:

  • Hydraulic to Mechanical-Assisted Pumping (Generasi-1), prinsipnya menggunakan double energy conversion yaitu konversi-1 terjadi ketika energi hidrolis dari brine/concentrate RO terkonversi menjadi energi mekanik untuk memutar turbine shaft dan konversi-2 terjadi ketika energi mekanik dari shaft terkonversi ke energi hidrolis dari feed HP pump RO. Sistem ini yang paling tua dan dipertimbangkan masih belum efisien dan tidak signifikan mengurangi biaya operasional karena adanya losses selama perpindahan konversi energi tersebut. Contoh jenis teknologi yang menggunakan prinsip ini adalah Francis Turbine (FT) dan Pelton Wheel (PW)
  • Hydraulically Driven Pumping in Series (Generasi-2), prinsip ini menggunakan impeller HP pump dan impeller hidrolis turbine (turbocharger) yang ter-couple shaft didalam casing yang sama dan ditempatkan secara series. Teknologi ini adalah penyempurnaan dari generasi-1 namun juga masih belum sempurna dalam hal konversi energi dari hidrolis ke mekanis dan kemudian balik ke hidrolis. Contoh jenis teknologi yang menggunakan prinsip ini adalah Turbocharger
  • Hydraulically Driven Pumping in Parallel (Generasi-3), prinsipnya adalah energi hidrolis dari brine/concentrate RO bertemu dengan energi hidrolis dari feed tanpa terkoneversi ke energi mekanis (seperti generasi-1 dan 2). Teknologi ini membutuhkan pompa tambahan sebagai buffer separating feed dengan HP pump RO yang ditempatkan paralel dengan pompa tambahan tersebut yaitu booster pump. HP pump RO bekerja dibantu tekanan yang diberikan booster pump dari brine/concentrate sehingga konsumsi energi bisa menjadi turun. Teknologi ini memungkinkan tingkat kestabilan efisiensi recovery yang tinggi karena semakin tinggi flowrate brine/concentrate maka bisa menurunkan beban kerja HP pump RO. Prinsip kerja pompa tambahan adalah high speed sekitar 1500 rpm sehingga sangat kecil kontak antara feed dengan brine/concentrate sehingga kualitas feed masuk membrane tetap bisa terjaga. Contoh jenis teknologi yang menggunakan prinsip ini adalah Pressure Exchanger by Energy Recovery Inc. (ERI), Recuperator by Aqualyng Company  dan Dual Work Exchanger (DWEER)
Berikut peta perkembangan teknologi ERD:

Macam-Macam Energy Recovery Devices (ERD) yang digunakan pada Reverse-Osmosis (RO) pump adalah:

  • Francis Turbine (FT), merupakan jenis "hydraulic to mechanical-assisted pumping" dan merupakan teknologi ERD paling awal sejak penemuan RO. Teknologi ini sangat mudah dilakukan dan sangat sederhana yaitu energi kinetik dari brine/concentrate RO ter-couple dengan HP pump RO sehingga membentuk satu aliran.
  • Pelton Wheel (PW), merupakan jenis "hydraulic to mechanical-assisted pumping: dan teknologi ini adalah yang sangat baik dalam pengurangan biaya konsumsi energi karena low cost motor. Metode masih hampir sama dengan Francis Turbine dengan sedikit modifikasi penyempurnaan.
  • Turbocharger by Pump Engineering Inc. (PEI) dan Fluid Equipment Development Company (FEDCO) , merupakan tipe dari "hydraulically driven pumping in series" dengan kerja flow reject/brine/concentrate RO dihubungkan dengan centrifugal spinning impeller (hydraulic turbine) sehingga tekanan HP pump RO bertambah. Turbocharger device ini adalah paket peralatan dimana impeller HP pump dan impeller hydraulic turbine (Turbocharger) dalam satu shaft dengan blade hydraulic tuebone turbocharger mirip reverse running pump. HP pump RO dan hydraulic turbine turbocharger tidak direct langsung seperti Franchis Turbine dan Pelton Wheel. Salah satu kelebihan turbocharger dimana teknologi yang paling banyak dipakai saat ini karena low maintenance.
  • Recuperator by Aqualyng Company, termasuk tipe "hydraulically driven pump in parallel" dengan cara kerjanya membuat tekanan konstan pada flow feed. Terdapat 2 vertical stainless steel chamber (1 running & 1 stop) yang berfungsi sebagai compression-decompression sehingga tekanan yang akan disalurkan gabung sudah sama dengan output dari HP pump RO. Teknologi ini membutuhkan booster pump untuk mejaga tekanan drop selama melewati membrane. Teknologi ini munggunakan 3-way valve untuk mengontrol flow feed sebelum masuk membrane.
  • Dual Work Exchanger (DWEER), termasuk tipe "hydraulically driven pump in parallel" dengan prinsip 2 pressure vessel disusun paralel (1 running & 1 stop untuk mencegah gangguan flow dari reject/brine/concentrate RO). Tekanan dari reject RO ditransfer ke aliran feed melewati piston dan teknologi ini juga membutuhkan booster pump mirip teknologi Recuperator
  • Pressure Exchanger (PX) by Energy Recovery Inc. (ERI), merupakan jenis teknologi yang prinsipnya adalah "hydraulically driven pumping in parallel". Cara kerjanya energi hdrolis dari reject/brine/concentrate RO masuk PX devices dan karena direct pressurization maka tidak ada losses yang disebabkan oleh transformasi/konversi proses/energi (seperti generasi-1 dan 2 yang harus berubah dari energi hidrolis ke mekanis dan kembali lagi ke hidrolis). PX devices berisi ceramic cartridge dan alasan pemakaian ceramic karena keras, tahan korosi dan kestabilan dimensi oleh kondisi operasi. Teknologi PX by ERI juga memerlukan booster pump sehingga bisa isobaric (tekanan konstan).
Terdapat beberapa macam ERD dan masing-masing memiliki kelebihan dan kelemahan sehingga tidak bisa dibuat kesimpulan bahwa teknologi mana yang terbaik dan memberikan efisiensi yang lebih baik.
  • Teknologi yang bersifat isobaric (tekanan yang dihasilkan selalu konstan) karena device tambahannya bisa adjustable adalah: (i) Recuperator; (ii) DWEER; (iii) Pressure Exchanger by ERI
  • Teknologi Hydraulically Driven Pumping in Parallel (Generasi-3) seperti Recuperator, DWEER dan Pressure Exchanger by ERI muncul karena pertimbangan ketika energi terkonversi dari hidrolis ke mekanis kemudian balik lagi ke hidrolis akan menghasilkan loss energy sehingga seharusnya konversi energi cukup dari hidrolis ke hidrolis.
Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2022). Macam-Macam Energy Recovery Devices (ERD) pada Reverse Osmosis. www.caesarvery.com

Referensi:
[1] Guirguis, M.J. (2011). Energy Recovery Devices in Seawater Reverse Osmosis Desalination Plants with Emphasis on Efficiency and Economical Analysis of Isobaric Versus Centrifugal Devices. Univ. of South Florida

Performance Reverse Osmosis (RO)-SWRO-BWRO terhadap Kondisi Air Umpan (Kavitasi, Temperatur Tinggi, Gas Terlarut)

Diposting oleh On Wednesday, August 31, 2022

Reverse-Osmosis (RO) adalah salah satu desalination system yang menggunakan membrane semi-permeable dengan dibantu reverse dipaksa oleh high pressure pump. Di PLTU terdapat 2 RO yaitu: (i) sea water reverse osmosis (SWRO) yang berperan menurunkan conductivity air laut dari >35,000 µS/cm menjadi <1000 µS/cm dengan %recovery standard 25-30%; dan (ii) brackish water reverse osmosis (BWRO) yang merupakan tahap lanjutan after SWRO yang berperan menurunkan conductivity  sampai <20 µS/cm dengan %recovery standard 70-90%. Parameter RO sering naik-turun karena kondisi fluktuatif umpan air yang masuk, berikut faktor yang mempengaruhi performance RO: [Francis and Pashley, 2011] [Kang et al., 2007]

  • Temperatur umpan air yang masuk, meningkatnya temperatur air umpan maka meningkatkan permeate RO (produk yang diharapkan) 2-3% per kenaikan 1 oC (di range 20-30 oC)
  • Pre-heating umpan air yang masuk tidak disarankan karena bisa meningkatkan kavitasi sehingga terbentuk uap yang menghalangi polymer matrix pada skin layer membrane sehingga menurunkan permeate flow
  • Kavitasi pada RO juga bisa disebabkan karena keberadaan dissolved atmospheric gas di air umpan yang mempengaruhi kinerja high pressure pump RO
  • Tingginya differential pressure (DP) inlet-outlet RO membrane bisa menyebabkan kavitasi. Membrane RO yang  berisi hydrophobic sehingga keberadaan kavitasi (gas) bisa terlepas didalam porous matrix dari RO membrane sehingga pembentukan gas terlarut terhambat
  • Fouling yang disebabkan penumpukan mikroba menyebabkan blockage dan mengkorosi cellulose acetate
  • Oksidasi yang disebabkan tingginya free chlorine dan inilah alasan residual chlorine input membrane RO dijaga pada 0.1-0.5 mg/L (ppm) dan untuk membrane dari aromatic polyamide disyaratkan <0.1 mg/L karena keberadaan chlorine merusak ikatak hydrogen di membrane
Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2022). Performance Reverse Osmosis (RO)-SWRO-BWRO terhadap Kondisi Air Umpan (Kavitasi, Temperatur Tinggi, Gas Terlarut)www.caesarvery.com

Referensi:
[1] Francis, M.J., and Pasley, R.M. (2011). The Effects of Feed Water Temperature and Dissolved Gases on Permeate Flow Rate and Permeate Conductivity in a Pilot Scale Reverse Osmosis Desalination Unit. J. of Desalination and Water Treatment. Vol. 36, pp. 363-373
[2] Kang, G.D., Gao, C.J., Chen, W.D., Jie, X.M., Cao, Y.M and Yuan, Q. (2007). Study on Hypochlorite Degradation of Aromatic Polyamide Reverse-Osmosis Membrane. J. of Membrane Science. Vol. 300, pp. 165-171

Perbandingan Teknologi Positive Material Identification (PMI) antara XRF, OES dan LIBS

Diposting oleh On Thursday, August 25, 2022

 Positive Material Identification (PMI) tidak lepas dari pekerjaan engineer teknik di bidang material-metallurgi. Teknologi PMI dari tahun ke tahun selalu mengalami perkembangan lewat inovasi-inovasi yang ditujukan untuk mencapai keakuratan analisa, portable ringan, ringkas dan safety baik bagi human or environment. Pada satu abad ini sudah terdapat 3 teknologi PMI yang berkembang seperti:

  1. X-Ray Fluorescence (XRF)
  2. Optical Emission Spectrometers (OES)
  3. Laser Induced Breakdown Spectroscopy (LIBS)

Berdasarkan Handbook of Miziolek et al (2006) sebagai berikut:


Dari lieteratur tersebut didapatkan informasi sebagai berikut(Miziolek et al., 2006)
  • Teknologi laser awal mulai ditemukan Tahun 1960 dan Tahun 1980 dikembangkan laser untuk LIBS. Dalam perjalanan ke Abad 21 LIBS merupakan teknologi terupdate/termodern di dunia ini sejak pengembangan dan penyempurnaan di Tahun 2004
  • LIBS bisa digunakan untuk menguji komposisi kimia pada logam, batu, tanah, serbuk, liquid, gigi, tulang dll
  • LIBS menggunakan metode Atomic Emission Spectroscopy (AES) dengan langkah kerja: (iatomization; (iiexcitation; (iiidetection; (ivcallibration; (vdetermination
  • LIBS yang mengusung metode AES memiliki kelebihan dibandingkan teknologi non-AES sebagai berikut: (i) kemampuan mendeteksi seluruh unsur kimia; (ii) ringkas; (iiireal-time analysis; (iv) tidak ada preparasi sampel (atau sedikit preparasi); (v) bisa digunakan untuk uji sampel solid, liquid dan gas; (vi) sensitifitas yang baik pada unsur tertentu (Cl, F) yang tidak bisa dideteksi oleh teknologi non-AES
  • Penggunaan gas Argon (Ar) pada LIBS memiliki manfaat mengurangi interferensi molekul, meningkatkan intensitas spark dan cocok untuk observasi wavelength unsur di kisaran 200 nm

Berdasarkan Standard API 578 sebagai berikut:

Berdasarkan standard tersebut didapatkan infomasi sebagai berikut: (API 578)
  • Teknologi Optical Emission Spectrometry (OES) terbagi menjadi 3 kelas yaitu: (iKELAS I: skala laboratorium yang masih manual mengandalkan operator skill dan pengalaman. Output dari alat masih semi-qualitative dan  harus menganalisis berdasarkan visible light spectra yang didapatkan untuk dicocokkan dengan literatur. Kemampuan reading hanya sampai 16 unsur; (iiKELAS IIportable untuk analisis di lapangan atau laboratorium dengan menggunakan big cyclinder gas Argon (Ar) dimana desain yang semakin kesini menjadi small cylinder gas Argon (Ar) dengan kelebihan bisa membaca unsur Carbon (C). Kelas ini tidak membutuhkan subjective dari interpretasi operator karena langsung ter-display quantitaive result. Kelas ini menggunakan metode arc (busur) dan spark (percikan); (iiKELAS III: teknologi LIBS yang menggunakan high pulse sehingga membentuk plasma high temperature pada sampel dan atom di sampel kemudian ter-eksitasi dan pada proses pendinginan maka atom akan kembali ke orbital-nya masing-masing dengan mengeluarkan cahaya (bisa UV, optic atau infrared), cahaya tersebut ditangkap detector kemudian dibaca sesai wavelength karakteristik masing-masing unsur. Kelas ini memiliki kelebihan yaitu dapat membaca low carbon analysis
Berdasarkan penelusuran web di Question & Answer Researchgate (2018) sebagai berikut:

Berdasarkan pembahasan tersebut bisa didapatkan informasi sebagai berikut(Question & Answer Researchgate, 2018)
  • Penggunaan gas Argon (Ar) pada LIBS digunakan untuk meningkatkan sinyal (sensitivitas) karena ketika LIBS running ditembakkan pada sampel maka akan terjadi pengeluaran plasma high temperature sehingga bisa meng-excitasi atom dan temperature ini sebisa mungkin dijaga jangan terserap oleh atmosfer sehingga digunakan gas Argon (Ar) untuk mengisolasi plasma. Temperatur plasma dan density/intensitas adalah kunci higher LIBS signal (Rai, 2018; Biswas, 2018)
Berdasarkan artikel di Vericheck (2022) sebagai berikut:


Berdasarkan artikel tersebut didapatkan informasi sebagai berikut(Vericheck, 2022)
  • Fungsi gas Argon (Ar) pada OES adalah untuk menganalisa light-element (C, P, S, N) dimana semuanya memiliki wavelength <200 nm. Gas Argon (Ar) mampu membantu spectrometer pada wavelength dari 200 nm bahkan dibawahnya (sinar UV)
  • Perhatian pada gas Argon (Ar) meliputi: (i) purity Argon ada 2 yaitu 4.8 setara 99.998& dan 5.0 setara 99.999%, dimana pure gas Argon (Ar) harus meminimalisir gas CO2 dan H2O karena kedua senyawa tersebut merusak wavelength dari 200 nm dan dibawahnya, sehingga tingkat purity gas Argon (Ar) sengat berpengaruh terhadap akurat/tidaknya analisa pada OES

Berdasarkan artikel dari Pyromation (2022):
Berdasarkan literatur tersebut didapatkan informasi sebagai berikut(Pyromation, 2022)
  • OES adalah HANYA metode yang handal untuk mengukur unsur Carbon (C) seperti pada stainless steel, Magnesium (Mg) dan Silicon (Si) dimana semuanya adalah light-element
  • Pengukuran di OES dapat dicapai juga TANPA gas Argon (Ar) tetapi tingkat keakuratan dan  kepresisian yang kurang dan harus dilakukan terus pengulangan agar didapatkan rata-rata hasil yang stabil
Berdasarkan artikel di Hitachi (2022) sebagai berikut:

Berdasarkan artikel tersebut didapatkan informasi sebagai berikut(Hitachi, 2022)
  • Carbon Equivalent (CE) adalah konsep menghitung perkiraan jumlah C umumnya di ferrous material (steel dan cast iron) yang menggunakan convert persentase unsur lain pada alloy yang diuji
  • Carbon content adalah hasil pembacaan riil detektor alat yang didasarkan pada tingkat energi excitasi yang dipancarkan (pada teknologi XRF, OES, LIBS)
  • XRF, OES dan LIBS adalah teknologi yang sangat berguna namun masing-masing memiliki kelebihan dan kelemahan
  • Kelebihan XRF adalah: (i) teknologi yang telah digunakan >40 tahun; (ii) menguji komponen tanpa meninggalkan luka/goresan/roughness dan baik untuk uji di industri otomotif dan pesawat terbang; (iii) tingkat kekuratan pembacaan yang tinggi. Kelemahan XRF adalah: (i) tidak bisa membaca unsur Carbon (C); (ii) dibutuhkan operator khusus karena bahaya radiasi X-ray
  • Kelebihan OES adalah: (i) sangat baik digunakan untuk mengukur semua unsur bahkan light element (C, B, P, N); (ii) tingkat kekurasian sangat tinggi. Kelemahan OES adalah: (i) meninggalkan luka/goresan pada sampel yang diuji; (ii) menggunakan energi yang lebih besar dibandingkan  XRF dan LIBS; (iii) masih menggunakan gas Argon (Ar); (iv) membutuhkan preparasi sampel yang bersih dari pengotor
  • Kelebihan LIBS adalah: (i) teknologi ter-update dan terbaru di abad 21; (ii) merupakan pengembanga teknologi, dimana laser memancarkan kecil namun energi yang ditransfer ke sampel sangat besar; (iii) sangat baik digunakan untuk mengukur Al alloy; (iv) walaupun tekniknya menembak sampel mirip OES namun luka yang tergores sangat kecil bahkan diamplas sedikit sudah hilang. Kelemahan LIBS adalah: (i) membutuhkan preparasi sampel yang bersih dari pengotor
Berdasarkan jurnal dari Noll et al (2018) sebagai berikut:
Berdasarkan jurnal tersebut didapatkan informasi sebagai berikut(Noll et al., 2018)
  • Tidak ada teknologi sampai saat ini yang bisa menyamai tingkat kemampuan dalam membaca banyak unsur kimia sebaik LIBS, dimana metodenya yang menggunakan pengukuran jarak antara last optic dengan jarak objek
Berdasarkan jurnal dari Afgan et al (2017) sebagai berikut:
Berdasarkan jurnal tersebut didapatkan informasi sebagai berikut(Afgan et al., 2017)
  • Kelemahan LIBS adalah akurasi dan presisi rendah sehingga peneliti harus effort lebih mengulang-ulang pengukuran untuk mendapatkan sensitiftas dan keakuratan yang baik
  • Pengukuran unsur Carbon (C) pada steel merupakan tantangan peneliti  pada peralatan LIBS baik benchtop maupun portable karena hasil pengukuran quantitative Carbon (C) content pada wavelength setara UV light terserap oleh udara atmosfer
  • Berdasarkan penelitian di jurnal disebutkan bahwa hasil dari LIBS lebih mendekati keakuratan (parameter rata-rata deviasi standard) daripada XRF bahka tingkat rata-rata validasi error LIBS lebih rendah dibandingkan XRF
Berdasarkan jurnal Switzner et al (2020) sebagai berikut:

Berdasarkan jurnal tersebut didapatkan informasi sebagai berikut(Switzner et al., 2020)
  • Dari hasil pengujian beberapa teknologi terdapat karakteristik kemampuan dari masing-masing teknologi seperti: (i) LIBS mampu membaca semua unsur kecuali S dan P; (ii) XRF mampu membaca semua unsur kecuali C dan V; (iiiFilling mampu membaca semua unsur kecuali Nb; (iv) OES mampu membaca semua unsur
Berdasarkan tabel periodik unsur ini yang disebut "LIGHT ELEMENT" adalah unsur dengan nomor atom dibawah Mg (Z=12) yaitu Na (Z=11), O (Z=8), N (Z=7), C (Z=6) dan B (Z=5)

Berdasarkan jurnal dari Griinberger eta al (2019) sebagai berikut:
Berdasarkan jurnal tersebut didapatkan informasi sebagai berikut(Griinberger et al., 2019)
  • Gas Argon (Ar) pada LIBS digunakan untuk mengisolasi plasma sehingga meningkatkan emission intensity
Berdasarkan jurnal dari Rajavelu et al (2021) sebagai berikut:

Berdasarkan jurnal tersebut didapatkan informasi sebagai berikut(Rajavelu et al., 2021)
  • LIBS adalah tipe dari AES yang menggunakan pembangkit laser pada high pulse
  • Kelebihan LIBS adalah: (i) analisa cepat; (ii) pengukuran yang simultan pada banyak unsur, (iii) mampu dioperasikan jarak jauh; (iv) sedikit (bahkan tidak ada) preparasi sampel
  • LIBS bisa digunakan pada sampel solid, liquid dan gas
  • Penggunaan LIBS yang kontak dengan udara atmosfer menyebabkan gangguan pada plasma yang dihasilkan laser sehingga mengganggu emision analysis yang menyebabkan pengukuran quantitative unsur menjadi error
  • Ketika menggunakan LIBS maka harus menjauhi kontak dengan udara atmosfer
  • Penggunaan gas Argon (Ar) pada LIBS menggunakan prinsip blow gas over sehingga lingkungan tempat plasma terbentuk menjadi inert atmosphere. Tujuan isolasi dari plasma ini adalah menghalangi interaksi plasma dengan udara atmosfer yang bisa mempengaruhi terbentuknya oksida dan fragment molekul yang bisa mengurangi intensitas emision plasma
  • Wavelength cahaya terbagi menjadi 3 yaitu: (i) <400 nm masuk kategori UV radiation; (ii) 400-800 nm masuk kategori visible radiation (light); (iii) 800 nm-1 mm masuk kategori infrared radiation
  • Wavelength unsur Carbon (C) pada kisaran 193 nm masuk kategori UV radiation
  • Selain menggunakan gas Argon (Ar), LIBS bisa menggunakan metode vacuum untuk disekeliling plasma yang dimaksudkan sama untuk mengisolasi plasma agar tidak terserap oleh udara atmosfer
Berdasarkan jurnal dari Dong et al (2012):
Berdasarkan jurnal tersebut didapatkan informasi sebagai berikut(Dong et al., 2012)
  • Karakteristik dari spektrum emisi atom Carbon (C) tergantung pada gas environment karena perbedaan chemical dan physical properties plasma
  • Berdasarkan grafik terlihat bahwa wavelength gas Argon (Ar) jauh lebih tinggi dari Helium (He) kemudian diikuti oleh udara atmosfer sehingga gas Ar dan He bisa digunakan sebagai isolasi plasma LIBS
  • Penggunaan gas Argon (Ar) pada LIBS karena Ar memiliki kecenderungan membentuk konsentrasi elektron yang besar yang bisa meningkatkan intensitas emisi plasma sehingga urutan tingkat natara paremeter intensitas, temperatur dan jumlah electron density secara berurutan adalah Ar > He > Air
  • Udara atmosfer memiliki pengaruh pada emisi atom dan molekul
  • Temperatur eksitasi plasma adalah faktor utama yang mempengaruhi emisi atom Carbon (C) di setiap gas di atmosfer
Berdasarkan artikel di Sciaps (2022):

Berdasarkan artikel tersebut didapatkan informasi sebagai berikut(Sciaps, 2022)
  • LIBS mendeteksi quantitative unsur dengan cara ketika plasma mendingin maka atom yang ter-excitasi akan kembali ke orbital dengan mengeluarkan berkas cahaya (bisa dalam bentuk  UV, optical atau IR) dan wavelength itulah yang akan teridentifikasi pada detektor karena setiap unsur memiliki karakteristik masing-masing
  • Penggunaan gas Argon (Ar) bisa meningkatkan sinyal sampai 10x sehingga detection limit juga meningkat dan keakuratan dalam quantitative result bisa lebih baik
  • Unsur Carbon (C) memiliki wavelength 193.1 nm sehingga mudah terserap oleh UV (udara atmosfer) dan dengan penggunaan gas Argon (Ar) bisa menutup sampai 100x sedangkan jika tanpa gas Argon (Ar) tidak mungkin mencapai detection limit atau kepresisian pengukuran pada unsur C, Si, Cr
EXECUTIVE SUMMARY dari kajian beberapa literatur sebagai berikut:

  • Teknologi XRF digunakan sudah lebih dari 40 tahun yang lalu (Hitachi, 2022)
  • Kelebihan XRF adalah: (i) menguji komponen tanpa meninggalkan luka/goresan/roughness dan baik untuk uji di industri otomotif dan pesawat terbang; (ii) tingkat kekuratan pembacaan yang tinggi. Kelemahan XRF adalah: (i) tidak bisa membaca unsur Carbon (C); (ii) dibutuhkan operator khusus karena bahaya radiasi X-ray (Hitachi, 2022)
  • Teknologi Optical Emission Spectrometry (OES) terbagi menjadi 3 kelas yaitu: (iKELAS I: skala laboratorium yang masih manual mengandalkan operator skill dan pengalaman. Output dari alat masih semi-qualitative dan  harus menganalisis berdasarkan visible light spectra yang didapatkan untuk dicocokkan dengan literatur. Kemampuan reading hanya sampai 16 unsur; (iiKELAS IIportable untuk analisis di lapangan atau laboratorium dengan menggunakan big cyclinder gas Argon (Ar) dimana desain yang semakin kesini menjadi small cylinder gas Argon (Ar) dengan kelebihan bisa membaca unsur Carbon (C). Kelas ini tidak membutuhkan subjective dari interpretasi operator karena langsung ter-display quantitaive result. Kelas ini menggunakan metode arc (busur) dan spark (percikan); (iiiKELAS III: teknologi LIBS yang menggunakan high pulse sehingga membentuk plasma high temperature pada sampel dan atom di sampel kemudian ter-eksitasi dan pada proses pendinginan maka atom akan kembali ke orbital-nya masing-masing dengan mengeluarkan cahaya (bisa UV, optic atau infrared), cahaya tersebut ditangkap detector kemudian dibaca sesai wavelength karakteristik masing-masing unsur. Kelas ini memiliki kelebihan yaitu dapat membaca low carbon analysi(Standard API 578)
  • OES adalah HANYA metode yang handal untuk mengukur unsur Carbon (C) seperti pada stainless steel, Magnesium (Mg) dan Silicon (Si) dimana semuanya adalah light-element (Pyromation, 2022)
  • LIGHT ELEMENT adalah unsur dengan nomor atom dibawah Mg (Z=12) yaitu Na (Z=11), O (Z=8), N (Z=7), C (Z=6) dan B (Z=5)
  • Kelebihan OES adalah: (i) sangat baik digunakan untuk mengukur semua unsur bahkan light element (C, B, P, N); (ii) tingkat kekurasian sangat tinggi. Kelemahan OES adalah: (i) meninggalkan luka/goresan pada sampel yang diuji; (ii) menggunakan energi yang lebih besar dibandingkan  XRF dan LIBS; (iii) masih menggunakan gas Argon (Ar); (iv) membutuhkan preparasi sampel yang bersih dari pengotor (Hitachi, 2022)
  • Teknologi laser awal mulai ditemukan Tahun 1960 dan Tahun 1980 dikembangkan laser untuk LIBS. Dalam perjalanan ke Abad 21 LIBS merupakan teknologi terupdate/termodern di dunia ini sejak pengembangan dan penyempurnaan di Tahun 2004 (Miziolek et al., 2006) (Pyromation, 2022) (Hitachi, 20220) (Rajavelu et al., 2021) (Sciaps, 2022) (Switzner et al., 2020)
  • LIBS menggunakan metode Atomic Emission Spectroscopy (AES) dengan langkah kerja: (iatomization; (iiexcitation; (iiidetection; (ivcallibration; (vdetermination (Miziolek et al., 2006)
  • LIBS adalah tipe dari AES yang menggunakan pembangkit laser pada high pulse (Rajavelu et al., 2021)
  • LIBS bisa digunakan untuk menguji komposisi kimia pada logam, batu, tanah, serbuk, liquid, gigi, tulang, gas (Miziolek et al., 2006(Rajavelu et al., 2021) (Noll et al., 2018) (Afgan et al., 2017) (Switzner et al., 2020)
  • LIBS yang mengusung metode AES memiliki kelebihan dibandingkan teknologi non-AES sebagai berikut: (i) kemampuan mendeteksi seluruh unsur kimia; (ii) ringkas; (iiireal-time analysis; (iv) tidak ada preparasi sampel (atau sedikit preparasi); (v) bisa digunakan untuk uji sampel solid, liquid dan gas; (vi) sensitifitas yang baik pada unsur tertentu (Cl, F) yang tidak bisa dideteksi oleh teknologi non-AES (Miziolek et al., 2006)
  • Tidak ada teknologi sampai saat ini yang bisa menyamai tingkat kemampuan dalam membaca banyak unsur kimia sebaik LIBS, dimana metodenya yang menggunakan pengukuran jarak antara last optic dengan jarak objek (Noll et al., 2018)
  • Berdasarkan penelitian di jurnal disebutkan bahwa hasil dari LIBS lebih mendekati keakuratan (parameter rata-rata deviasi standard) daripada XRF bahka tingkat rata-rata validasi error LIBS lebih rendah dibandingkan XRF (Afgan et al., 2017)
  • XRF, OES dan LIBS adalah teknologi yang sangat berguna namun masing-masing memiliki kelebihan dan kelemahan (Hitachi, 2022)
  • Dari hasil pengujian beberapa teknologi terdapat karakteristik kemampuan dari masing-masing teknologi seperti: (i) LIBS mampu membaca semua unsur kecuali S dan P; (ii) XRF mampu membaca semua unsur kecuali C dan V; (iiiFilling mampu membaca semua unsur kecuali Nb; (iv) OES mampu membaca semua unsur (Switzner et al., 2020)
  • Kelebihan LIBS adalah: (i) teknologi ter-update dan terbaru di abad 21; (ii) merupakan pengembanga teknologi, dimana laser memancarkan kecil namun energi yang ditransfer ke sampel sangat besar; (iii) sangat baik digunakan untuk mengukur Al alloy; (iv) walaupun tekniknya menembak sampel mirip OES namun luka yang tergores sangat kecil bahkan diamplas sedikit sudah hilang. Kelemahan LIBS adalah: (i) membutuhkan preparasi sampel yang bersih dari pengotor (Hitachi, 2022)
  • Kelebihan LIBS adalah: (i) analisa cepat; (ii) pengukuran yang simultan pada banyak unsur, (iii) mampu dioperasikan jarak jauh; (iv) sedikit (bahkan tidak ada) preparasi sampel
  • Kelemahan LIBS adalah akurasi dan presisi rendah sehingga peneliti harus effort lebih mengulang-ulang pengukuran untuk mendapatkan sensitiftas dan keakuratan yang baik (Afgan et al., 2017)
  • Pengukuran unsur Carbon (C) pada steel merupakan tantangan peneliti  pada peralatan LIBS baik benchtop maupun portable karena hasil pengukuran quantitative Carbon (C) content pada wavelength setara UV light terserap oleh udara atmosfer (Afgan et al., 2017)
  • Penggunaan LIBS yang kontak dengan udara atmosfer menyebabkan gangguan pada plasma yang dihasilkan laser sehingga mengganggu emision analysis yang menyebabkan pengukuran quantitative unsur menjadi error (Rajavelu et al., 2021)
  • Ketika menggunakan LIBS maka harus menjauhi kontak dengan udara atmosfer (Rajavelu et al., 2021)
  • Temperatur eksitasi plasma adalah faktor utama yang mempengaruhi emisi atom Carbon (C) di setiap gas di atmosfer (Dong et al., 2012)
  • Karakteristik dari spektrum emisi atom Carbon (C) tergantung pada gas environment karena perbedaan chemical dan physical properties plasm(Dong et al., 2012)
  • Fungsi gas Argon (Ar) pada OES adalah untuk menganalisa light-element (C, P, S, N) dimana semuanya memiliki wavelength <200 nm. Gas Argon (Ar) mampu membantu spectrometer pada wavelength dari 200 nm bahkan dibawahnya (sinar UV) (Vericheck, 2022)
  • Pengukuran di OES dapat dicapai juga TANPA gas Argon (Ar) tetapi tingkat keakuratan dan  kepresisian yang kurang dan harus dilakukan terus pengulangan agar didapatkan rata-rata hasil yang stabil (Pyromation, 2022)
  • Penggunaan gas Argon (Ar) pada LIBS memiliki manfaat mengurangi interferensi molekul, meningkatkan intensitas spark dan cocok untuk observasi wavelength unsur di kisaran 200 nm  (Miziolek et al., 2006)
  • Penggunaan gas Argon (Ar) pada LIBS digunakan untuk meningkatkan sinyal (sensitivitas) karena ketika LIBS running ditembakkan pada sampel maka akan terjadi pengeluaran plasma high temperature sehingga bisa meng-excitasi atom dan temperature ini sebisa mungkin dijaga jangan terserap oleh atmosfer sehingga digunakan gas Argon (Ar) untuk mengisolasi plasma. Temperatur plasma dan density/intensitas adalah kunci higher LIBS signal (Rai, 2018; Biswas, 2018)
  • Gas Argon (Ar) pada LIBS digunakan untuk mengisolasi plasma sehingga meningkatkan emission intensity (Griinberger et al., 2019)
  • LIBS mendeteksi quantitative unsur dengan cara ketika plasma mendingin maka atom yang ter-excitasi akan kembali ke orbital dengan mengeluarkan berkas cahaya (bisa dalam bentuk  UV, optical atau IR) dan wavelength itulah yang akan teridentifikasi pada detektor karena setiap unsur memiliki karakteristik masing-masing (Sciaps, 2022)
  • Penggunaan gas Argon (Ar) pada LIBS menggunakan prinsip blow gas over sehingga lingkungan tempat plasma terbentuk menjadi inert atmosphere. Tujuan isolasi dari plasma ini adalah menghalangi interaksi plasma dengan udara atmosfer yang bisa mempengaruhi terbentuknya oksida dan fragment molekul yang bisa mengurangi intensitas emision plasma (Rajavelu et al., 2021)
  • Data menunjukkan bahwa wavelength gas Argon (Ar) jauh lebih tinggi dari Helium (He) kemudian diikuti oleh udara atmosfer sehingga gas Ar dan He bisa digunakan sebagai isolasi plasma LIBS (Dong et al., 2012)
  • Penggunaan gas Argon (Ar) pada LIBS karena Ar memiliki kecenderungan membentuk konsentrasi elektron yang besar yang bisa meningkatkan intensitas emisi plasma sehingga urutan tingkat natara paremeter intensitas, temperatur dan jumlah electron density secara berurutan adalah Ar > He > Air
  • Udara atmosfer memiliki pengaruh pada emisi atom dan molekul (Dong et al., 2012)
  • Penggunaan gas Argon (Ar) bisa meningkatkan sinyal sampai 10x sehingga detection limit juga meningkat dan keakuratan dalam quantitative result bisa lebih baik (Sciaps, 2022)
  • Selain menggunakan gas Argon (Ar), LIBS bisa menggunakan metode vacuum untuk disekeliling plasma yang dimaksudkan sama untuk mengisolasi plasma agar tidak terserap oleh udara atmosfer (Rajavelu et al., 2021)
  • Carbon Equivalent (CE) adalah konsep menghitung perkiraan jumlah C umumnya di ferrous material (steel dan cast iron) yang menggunakan convert persentase unsur lain pada alloy yang diuji (Hitachi, 2022)
  • Carbon content adalah hasil pembacaan riil detektor alat yang didasarkan pada tingkat energi excitasi yang dipancarkan (pada teknologi XRF, OES, LIBS) (Hitachi, 2022)
  • Wavelength cahaya terbagi menjadi 3 yaitu: (i) <400 nm masuk kategori UV radiation; (ii) 400-800 nm masuk kategori visible radiation (light); (iii) 800 nm-1 mm masuk kategori infrared radiation (Rajavelu et al., 2021)
  • Wavelength unsur Carbon (C) pada kisaran 193 nm masuk kategori UV radiation (Rajavelu et al., 2021)
  • Unsur Carbon (C) memiliki wavelength 193.1 nm sehingga mudah terserap oleh UV (udara atmosfer) dan dengan penggunaan gas Argon (Ar) bisa menutup sampai 100x sedangkan jika tanpa gas Argon (Ar) tidak mungkin mencapai detection limit atau kepresisian pengukuran pada unsur C, Si, Cr (Sciaps, 2022)
Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2022). Perbandingan Teknologi Positive Material Identification (PMI) antara XRF, OES dan LIBSwww.caesarvery.com

Referensi:
[1] API 578. (2018). Guidelines for a Material Verification Program (MVP) for New and Existing Assets
[6] Noll, R., Begemann, C.F., Connemann, S., Meinhardt, C., and Sturm, V. (2018). LIBS Analyses for Industrial Applications-an Overview of Developments from 2014 to 2018. Critical Review. Royal Society of Chemistry

[7] Afgan, M.S., Hou, Z., and Wang, Z. (2017). Quantitative Analysis of Common in Steel Using a Handheld µ-LIBS Instrument. Journal of Analytical Atomic Spectrometry

[8] Switzner, N., Liong, M., Veloo, P., Gould, M., and Rovella, T. (2020). Nondestructive Testing of Pipeline Materials: Further Evaluation of Portable OES, XRF, LIBS, and Fillings to Estimate Chemical Composition. Pipeline Pigging and Integrity Management Conference

[9] Miziolek, A.W., pallesschi, V., and Schechter, I. (2006). Handbook of Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Application. Cambridge University Press

[10] Griinberger, S., Watzl, G., Huber, N., and Fuchs, S.E. (2019). Chemical Imaging with laser Ablation-Spark Discharge-Optical Emission Spectroscopy (LA-SD-OES) and Laser-Induced Breakdown Spectroscopy (LIBS). J. of Optics and Laser Technology

[11] Rajavelu, H., Vasa, N.J., and Seshandri, S. (2021). LIBS Tecghique Combined with Blow Gas and Vacuum Suction to Remove Particle Cloud and Enhance Emission Intensity during Characterization of Powder Samples. J. of Atomic Spestroscopy, pp. 181

[12] Dong, M., mao, X., Gonzales, J.J., Lu, J., and Russo, R.E. (2012). Time-Resolved LIBS of Atomic and Molecular Carbon from Coal in Air Argon and Helium. J. of Analytical Atomic Spectrometry