Trending Topik

Macam-Macam Metode Pengukuran Kadar Air (Water/Moisture Content) pada Oli Pelumas (Oil Lubricating)

Diposting oleh On Monday, June 27, 2022

Kandungan air pada oil lubricating/oli pelumas dihindari keberadaannya karena akan menurunkan kemampuan oli dalam sistem pelumasan. Terdapat beberapa macam kontaminan air (water/moisture) seperti yang sudah dijelaskan di: Kandungan Air (Water Content) di Minyak Pelumas. Pengujian kontaminan air ini di laboratorium menggunakan beberapa teknologi seperti:

  • Crackle Test/Uji Pecah/Letupan Gekembung
Metodenya yaitu meneteskandroplet oli pada hot plate di temperature 160 oC sehingga kandungan air akan mendidih pada suhu 100 oC dan membentuk gelembung yang kemudian pecah sehingga bisa teramati secara visual biasa. Semakin besar gelembung yang dihasilkan semakin besar kontaminan air pada oli. Karakteristik metode crackle test adalah: (i) murah; (ii) cepat dan mudah; (iii) tidak membutuhkan keahlian operator khusus; (iv) uji hanya bersifat kualitatif tanpa kuantitatif; (v) mudah dilakukan di site; (vi) jenis water yang terukur adalah free & emulsified. Berikut skematiknya:
  • Calcium Hydride Test Kit
Metodenya adalah oli yang mengandung air dan sudah diketahui volumenya direaksikan dengan calcium hydride yang diketahui jumlahnya. Kedua senyawa dilarutkan dan akan menghasilkan gas hydrogen sesuai reaksi:

CaH2 + 2 H2O ---> Ca(OH)2 + 2 H2

Gas hydrogen yang dihasilkan memiliki tekanan yang dihubungkan dengan manometer dan berdasarkan reaksi stoikiometri yang dikonversikan maka mol hydrogen bisa digunakan untuk menentukan mol air.

Karakteristik metode calcium hydride test kit sebagai berikut: (i) biaya rendah; (ii) mudah dilakukan; (iii) portable; (iv) uji kuantitatif; (v) solvent dan chemical membutuhkan keahlian khusus karena vessel bertekanan; (vi) cocok untuk menguji water tipe free & emulsified mulai dari 0-50 ppm

  • Karl Fischer (KF) Titration (ASTM D6304-Coulometric; ASTM D1744-Volumetric)
Metodenya adalah menggunakan prinsip titrasi yaitu mengukur konsentrasi dari larutan yang tidak diketahui dengan larutan yang sudah diketahui konsentrasi dan jumlahnya. Titrant adalah larutan titrasi yang diketahui konsentrasi dan jumlahnya (ex: iodine) dimasukkan ke buret dan akan digunakan untuk mereaksikan kimia dengan larutan yang tidak diketahui (dalam hal ini adalah oil yang terkontaminasi air). Volume iodine yang digunakan adalah sama dengan volume air yang terdapat pada oli. Karakteristik dari metode Karl Fischer (KF) coulometric titration adalah: (i) dapat digunakan untuk mengukur water content tipe free, emulsified & dissolved water; (ii) membutuhkan skill operator khusus; (iii) umumnya cocok untuk laboratorium bukan portable karena kondisi alat dan bahan kimia yang digunakan; (iv) mengukur water content kuantitatif; (v) pengembangan teknologi lebih jauh menggunakan potentiometric cell untuk menentukan end point/titik akhir kesetimbangan reaksi titrasi; (vi) sangat baik untuk mengukur water <200 ppm; (vii) terdapat 2 metode yaitu volumetric & coulometric; (viii) tipe coulometric lebih handal/akurat dibandingkan volumteric pada low water concentration
  • Relative Humidity Meter/Saturation Meter (ASTM D7546)
Metodenya adalah memadukan antara thermal conductivity, resistive dan capacitive.Ketika jumlah kandungan air pada oli dibawah saturation poin (dew point) maka secara tidak langsung bis adigunakan untuk menentukan kandungan air. Berikut gambar alatnya:
Capacitive sensor digunakan untuk menentukan relative humidity. Karakteristik dari metode saturation meter adalah: (i) 
  • Infrared (IR) Spectroscopy/FTIR Analysis
Metode yang  digunakan adalah menganalisis spektrum materi, dimana setiap materi memiliki panjang gelombang karakteristik yang berbeda-beda. Karakteristik dari metode FTIR adalah: (i) cocok untuk screening water content >1000 ppm; (ii) bisa dengan mudah membandingkan antara fresh/new oil dengan oli yang diuji; (iii) karena keterbatasan presisi dan deteksi limit sehingga IR sepectroscopy kurang cocok untuk water content <1000 ppm
  • Dean & Stark /Distillation Method (ASTM D95)
Ini adalah metode paling sederhana yaitu dengan menguapkan air pada titik didihnya kemudian ditampung dan dihitung volumenya. Karakteristik metode ini adalah: (i) membutuhkan sampel yang besar
Referensi:
[3] Garvey, R., and Fogel, G. (1996). Estimating Water Content in Oils: Moisture in Solution, Emulsified Water, and Free Water. US Department of Defense

Coal Dust Suppression/Penangkap Debu Abu Terbang Batu Bara/Water & Chemical Medium Based

Diposting oleh On Monday, June 06, 2022

Dust Suppression adalah penekan/peminimalisir debu. Di pertambangan batu bara atau PLTU yang menggunakan bahan bakar batubara dan sisa pembakaran berupa fly ash (abu terbang/ringan) penggunaan dust suppression umum dilakukan. Terdapat 2 tipe dust suppression yaitu: (i) water medium; (ii) chemical medium.

 
Water medium terbagi menjadi 4 yaitu: [Zhou and Qin, 2021]

  1. Water Injection, injeksi air ini bermanfaat untuk pembasahan awal coal/dust body. Umumnya yang sering kita dengar adalah water gun. Teknik ini efektif menurunkan dust 30-50% namun meningkatkan moisture/water content coal sampai 0.7% [Zhou and Qin, 2021]; 1-2.5% [Liu et al, 2018]
  2. Water Spray, sistem atomisasi air dengan area covering luas, simpel dan biaya rendah. Efisiensi metode ini bisa dinaikkan dengan menambah flowrate dan tekanan air. Efisiensi dust control metode ini bisa mencapai >60% 
  3. Wet Dust Scrubber, bentuk tirai air untuk perangkap dust air sebelum dibuang ke atmosfer, cocok untuk aplikasi sebelum cerobong 
  4. Magnetized Water, ini meng-adopsi teknik physical untuk meningkatkan kemampuan pembasahan dengan menurunkan tegangan permukaan dan viskositas dari air serta meningkatkan sistem atomisasi 
Penggunaan medium air memiliki efisiensi yang rendah <50% karena dust memiliki kemampuan hydrofobic (menolak air) dan juga surface tension (tegangan permukaan) yang tinggi, sehingga diperlukan chemical medium berbasis surfactant yang bisa menghubungkan antara 2 sifat tersebut dan berdampak antara permukaan larutan dan udara bisa bergabung serta debu bisa tertangkap [Zhou and Qin, 2021]. 2 cara surfactant meningkatkan kemampuan pembasahan yaitu: (i) mengurangi tegangan permukaan air; (ii) meng-konversi permukaan coal agar bersifat hydrophilic dengan menyerap sifat hydrophobic [Liu et al, 2018]
Chemical medium terbagi menjadi 3 yaitu: [Zhou and Qin, 2021]
  1. Foam, ini terbentuk dari injeksi udara ter-kompresi dengan larutan sehingga terbentuk foaming/busa. Konsentrasi foam yang umum digunakan adalah 0.8-3%. [Xu et al, 2020]
  2. Surfactant, prinsip menggandeng 2 tangan yaitu menurunkan hydrophobic dan meningkatkan hydrofilic. Chemical surfactant seperti sodium dodecyl ether sulfate (SDES), sodium fatty alcohol polyoxyethylene ether sulfate (AES), exopolysaccharide (EPS) [Xu et al, 2020]. Surfactant adalah senyawa organic yang terdiri dari kepala bersifat polar (hydrophilic, lipophobic, oleophobic) dan ekor bersifat non-polar (hydrophobic, liphophilic, oleophilic). Hydrophilic surfactant terbagi menjadi 4 kelas yaitu: (i) anionic, ex: sodium dodecyl sulfate-SDS ; (ii) non-anionic, ex: octylphenol ethoxylate; (iii) cationic, ex: cetyl trimethyammnoium bromide-CTAB; and (iv) amphoteric [Xu et al, 2018].
  3. Humectant Spray
Berikut kelebihan dan kelemahan masing-masing metode dust suppression:

Referensi:
[1] Zhou, Q., and Qin, B. (2021). Coal Dust Suppression Base on Water Mediums: A Review of Technologies and Influencing Factors. J. of Fuel 302, 121196
[2] Xu, C., Wang, H., Wang, D., Zhu, X., Zhu, Y., Bai, X., and Yang, Q. (2020). Improvement of Foaming Ability of Surfactant Solutions by Water-Soluble Polymers: Experiment and Molecular Dynamics Simulation. J. of Ploymers, pp 12-571
[3] Liu, Z., Cao, A., Guo, X., and Li, J. (2018). Deep-Hole Water Injection Technology of Strong Impact Tendency Coal Seam-A Case Study in Tangkou Coal Mine. Arabian Journal of Geosciences, 11:12
[4] Xu, G., Chen, Y., Eksteen, J., and Xu, J. (2018). Surfactant-Aided Coal Dust Suppression: A Review of Evaluation Methods and Influencing Factors. J. Science of the Total Environment, 639, pp. 1060-1076

Industrial Chemical Cleaning Tube Boiler Condenser

Diposting oleh On Thursday, May 12, 2022

Korosi adalah hasil oksidasi metal dari beberapa agent oxidizing di lingkungan. Selama proses korosi, elektron mengalir melewati metal dan ion mengalir dari satu area ke area lain pada larutan yang disebut dengan proses elektrokimia. Proses oksidasi (korosi) besi oleh ion hydrogen sesuai reaksi:

2H+ + Fe ---> Fe2+ + H2

Banyka korosi terjadi pada besi disebabkan oleh kegagalan pembersihan dan pasifasi yang benar pada peralatan baru. (McCoy, 1984)

Alkali dan garam asam lemah digunakan untuk emulsify, saponify, oily untuk menetralkan residu asam dari chemical cleaning dan untuk membentuk pasifasi pada permukaan metal.

Sebagian besar korosi tipe fouling dan deposit terlarut oleh HCl yang bersifat asam kuat. Semua asam kuat cocok diterapkan dengan sebelumnya diberi inhibitor untuk meminimalisir serangan asam pada metal. HCl adalah chemical termurah untuk digunakan dalam chemical cleaning. HCl pada konsentrasi 5-10% efektif untuk melarutkan ferric oxide (Fe2O3), sesuai reaksi:

Fe2O3 + 6H+ ---> 2 Fe3+ + 3 H2O

Fe2O3 + Fe + 6H+ ---> 3Fe2+ + 3H2O

HCl cocok digunakan untuk cleaning carbon steel, low-chromium steel, cast iron, admiralty brass, bronze, cupro nickle dan monel. Laju korosi ketika chemical cleaning ergantung pada: (i) metal yang dicleaning; (ii) konsentrasi inhibitor; (iii) konsentrasi asam; (iv) lama paparan; (v) temperature; (vi) velocity larutan asam.


HCl tidak boleh digunakan pada stainless steel, titanium, zinc, alumunium dan galvanized iron. Hal ini karena ion chloride pada konsentrasi serendah 40 ppm saja bisa menyebabkan intergranular atau transgranular cracking. HCl juga bisa menyebabkan hydrogen embrittlement pada titanium

Agent penetral HCl adalah CaCO3, (Ca(OH)2, Na2CO3, NaOH

Asam sulfat (sulphuric acid) jarang sekali digunakan dalam chemical cleaning karena sifatnya pada pelarutan yang menghasilkan panas tinggi dan mudah mengiritasi kulit. Cara pencampurannya juga unik, dimana HCl dituangkan secara perlahan ke air dan tidak sebaliknya karena akan menghasilkan percikan panas yang tinggi. Konsentrasi H2SO4 yangdigunakan antara 5-15% pada temperatur yang tidak lebih dari 180 oF dan umumnya digunakan untuk cleaning stainless steel

Agent penetral H2SO4 adalah gypsum (CaSO4), lime/limestone (CaCO3) atau soda ash (Na2CO3 dan caustic soda (NaOH) yang terbaik.

Sulfamic acid/asam sulfamat (HSO3NH2) adalah bahan kimia asam yang cukup mahal dibandingkan lainnya namun memiliki kelebihan bisa digunakan oleh user yang kurang pengalaman dan di indoor tanpa membutuhkan keahlian kontraktor tersertifikasi. Ketika sulfamic acid digunakan untuk acid cleaning, itu tidak menyebabkan pitting. Bahkan ketika penerapannya dikombinasikan dengan NaCl (10% HSO3NH2, 5% NaCl) itu efektif untuk melarutkan ferric oxide (Fe2O3)

Pasifasi sulfamic acid cocok menggunakan sodium nitrit dan jika masih banyak residu acid di tube maka pasivasi kurang sempurna. Reaksi pasifasi seperti berikut:

HSO3NH2 + NO2- ---> N2 + H2O + SO42- + H+

Urutan tingkat korosifitas asam dari terendah ke tertinggi adalah citric-sulfamic-phosphoric-hydrochloric

Sesudah dilakukan chemical cleaning pada permukaan tube maka harus dilakukan pasifasi karena permukaan tube secara alamiah mebgalami oksidasi cepat dengan adanya udara atmosfer. Pasifasi sangat dibutuhkan pada iron (besi) dibandingkan chromiu, nickle, copper, brass, monel dan cupronickel karena material tersebut memiliki pasifasi alamiah sendiri ketika kontak dengan udara yang diberi nama oxide film. Permukaan material yang tertutup oleh oil, scale, deposit tidak dapat dilakukan pasifasi sehingga normalnya harus dilakukan water jetting sebelum pasifasi.



Sulfamic acid sangat mudah dilakukan penanganan, penyimpanan dan pencampuran tanpa membutuhkan keahlian khusus. Sulfamic acid cocok untuk material stainless steel. Sulfamic acid harga cukup mahal sehingga cook digunakan pada volume kecil. Penerapan konsentrasi antara 5-10% dengan waktu tinggal diijinkan antara 4-12 jam.

Berdasarkan Google Patent (2013) sebagai berikut:



Referensi:

[1] McCoy, J.W. (1984). Industrial Chemical Cleaning. Chemical Publishing-USA

[2] Google Patent-CN103361664A. (2013). Cleaning Method of Carbon Steel Pipeline and Cleaning Agents. China

Proses Korosi pada Iron-Steel atau Carbon Steel atau Besi Baja yang Umumnya pada Material Konstruksi

Diposting oleh On Saturday, December 25, 2021

Material konstruksi yang umumnya kita temui seperti jembatan, tiang listrik, rangka bangunan, peralatan di industri/PLTU dan masih banyak lagi lainnya pada umumnya adalah iron-steel (FeC) atau baja carbon atau carbon steel. Pada proses casting-nya material tersebut ditambahkan sedikit aditif unsur untuk memperbaiki sifat properties-nya. Detail bisa dibaca di: Mechanical Properties Unsur Logam (Metallurgy).

Proses korosi pada besi terjadi karena pada larutan yang bersifat anodik (sebagai tanda nilai bilangan oksidasi besi mengalami kenaikan) terdapat reaksi pelepasan elektron (kodrat semua unsur untuk mencapai keadaan stabil/mencari peasangan), berikut reaksinya: (Revie and Uhlig, 2008)

Fe ---> Fe2+ + 2e

Area yang anodik tersebut bisa dihambat dengan adanya anoda tumbal (sacrificial anode) atau injeksi arus (impressed current) sehingga besi sebagai material dasar digantikan fungsi anoda-nya oleh logam yang mudah teroksidasi (reduktor kuat) atau aliran elektron digantikan oleh fungsi injeksi arus sehingga tidak ada elektron yang hilang dari besi.

Sedangkan area cathodic (sebagai tanda terdapat pengurangan bilangan oksidasi), ditempati oleh media yang bisa menghantarkan arus elektron seperti kelembapan/air/elektrolit. Berikut reaksinya:

H+ + e ---> ½ H2

Reaksi katodik (reduksi) dipercepat pada pH asam dan diperlambat pada pH basa atau netral. Cathodic reaction juga bisa dipercepat dengan adanya dissolved oxygen (DO) yang dikenal dengan istilah "Depolarization" seperti reaksi berikut:

2 H+ + ½ O2  + 2e---> H2O

Dengan adanya pendukung lingkungan yang lengkap seperti moisture dan oxygen atmosfer maka permukaan besi akan bereaksi sebagai berikut:

Fe + H2O + ½ O2 ---> Fe(OH)2

Warna Fe(OH)2 adalah putih dan terkadang juga berwarna hijau atau hijau kehitaman yang disebabkan reaksi oksidasi lanjutan dengan oxygen. Fe(OH)2 ini masih belum tergolong karat masih sedimen/deposit pengotor permukaan iron. Ketika masih terdapat moisture dan excess oxygen maka akan lanjut bereaksi sebagai berikut:

Fe(OH)2  +  ½ H2O + ¼ O2 ---> Fe(OH)3

Warna Fe(OH)3 adalah orange atau merah kecoklat-coklatan yang sudah tergolong karat (rust) dan lebih lanjut tergolong menjadi 2 yaitu non-magnetic disebut hematite (Fe2O3) warna kemerahan dan magnetic (Fe3O4) warna kehitaman. Detail bisa dbaca di: Analisa kerak (Scale & Deposit) pada Boiler Turbine Condenser

Referensi:

[1] Revie, R.W., and Uhlig, H.H. (2008). Handbook Corrosion and Corrosion Control, An Intoroduction to Corrosion Science and Engineering.  Fourth Edition, John Wiley & Sons

Hubungan/Keterkaitan Dalam Uji Oil Transformer/Trafo Meliputi DGA-BDV-Furan

Diposting oleh On Wednesday, December 22, 2021

Transformator merupakan komponen vital dalam industri kelistrikan dan hampir semua industri memiliki trafo untuk mengatur tegangan. Dari bidang kimia terdapat beberapa uji dalam predictive maintenance (PdM) yang secara rutin dilakukan seperti uji Dissolved gas Analysis (DGA) atau gas terlarut, Break Down Voltage (BDV) atau tegangan tembus dan Furan atau senyawa aromatik. Dari 3 uji kimia tersebut, terdapat kesinambungan dan keterkaitan analisa yang bisa digunakan untuk judgment assesment, treatment atau overhaul trafo yang bisa digunakan oleh bidang elektrik melakukan tindakan lebih lanjut.

Transformator sendiri terdiri dari beberapa bagian penting, bisa dibaca di artikel: Bagian-Bagian dari Trafo Arus Kuat 3 Fase. Bagian yang akan menjadi perhatian khusus pada 3 uji kimia adalah oli, insulation paper selulosa, silica gel, fan/radiator dan konservator. Berikut penjelasan terkait hubungan antara 3 uji kimia di trafo:

  • Uji DGA digunakan untuk mengetahui detail AKIBAT yang ditimbulkan oleh pemanasan oil trafo dengan indikator pembacaan DGA adalah: (i) senyawa hydrocarbon rantai 1 (alkana), rantai 2 (alkena) dan rantai 3 (alkuna) sebagai akibat degradasi/pemutusan ikatan rantai hydrocarbon karena pemanasan, detai bisa dibaca di: Proses Pembentukan Gas-Gas Terlarut di Minyak Trafo; (ii) senyawa CO dan COsebagai indikator degradasi selulosa paper yang berbahan dasar nabati/bubur kertas; (iii) senyawa H2O sebagai indikator reaksi samping pembentukan gas hydrocarbon hasil degradasi oil trafo atau reaksi oil trafo dengan udara atmosfer. Nilai DGA semakin rendah semakin baik dan judgment awal ketika hasil DGA abnormal adalah purifikasi oil untuk meminimalisir gas hydrocarbon, karena gas ini mudah terbakar dan bisa menyebabkan trafo meledak.
  • Uji BDV digunakan untuk mengetahui SEBAB mengapa gas hydrocarbon,  CO dan CObisa muncul yang mengindikasikan fungsi oil trafo sebagai insulation sudah menurun. Perlu diketahui bahwa fungsi oil trafo sebagai berikut: (i) peredam panas/pendingin; (ii) isolasi antar bagian dalam trafo; (iii) peredam getaran medan magnet; dan (iv) pelumas khususnya On Load Tap Changer (OLTC). Ketika fungsi oil tersebut berkurang maka tegangan bisa tembus (SEBAB) yang mengakibatkan overheating pada oil terjadi dan terbentuklah gas hydrocarbon diawal (AKIBAT 1) dan kemudian perlahan selulosa paper terdegradasi (AKIBAT 2). Nilai BDV semakin tinggi semakin baik dengan artian oil tidak mudah ditembus oleh tegangan. Judgment individu ketika hanya uji BDV abnormal tanpa DGA adalah melakukan purifikasi dengan harapan bahwa nilai BDV rendah karena kontaminan seperti air sedangkan judgment ketika abnormal uji untuk BDV + DGA adalah purifikasi disertai make-up oil atau mengganti beberapa %volume oil. Ketika rekomendasi tersebut belum membuahkan hasil (artian kualitas oil tetap buruk) maka harus melakukan uji furan
  • Ketika 2 uji kimia meng-konfirmasi ketidaknormalan maka judgment awal adalah fungsi oil sebagai insulation menurun sehingga mengakibatkan overehating didalam trafo yang siiring berjalannya waktu akan mengikis selulosa paper.
  • Furan test digunakan di akhir sebagai konfirmasi, apakah dengan adanya fungsi oil yang menurun tadi sudah memperparah selulosa paper rusak. Furan menghasilkan beberapa senyawa aromatik yang menyusun selulosa/bubur kertas sehingga dengan mengetahui kuantitas senyawa pada oil bisa digunakan untuk mengetahui tingkat degradasi yang terjadi. Furan inilah judgment akhir untuk memutuskan apakah oil trafo perlu diganti atau tidak bahkan bisa digunakan untuk replace trafo.
Tugas bidang kimia sudah selesai dengan output memberikan rekomendasi yang segera bisa dilakukan oleh bidang elektrik. Berikut langkah-langkah yang bisa dilakukan oleh bidang elektrik:
  • Preventive Maintenance (PM) rutin thermography pada peralatan kabel RST, oil tank, trafo, dan fan/radiator
  • Melakukan pengecekan arus terminal
  • Semeriksa setting running fan/radiator
  • Memeriksa warna silica gel
  • Purifikasi oil, bila perlu make-up oil yang lebih baik dilakukan ketika online daripada offline hal ini terkait sifat gas itu sendiri yang bersifat mengisi ruang. Ketika online berarti pertumbuhan gas terus-menerus bertambah dan homogenisasi tercapai sehingga diharapkan ketika purifikasi selesai maka baseline kualitas oil adalah benar-benar baik
  • Ketika rekomendasi bertepatan dengan overhaul dan trafo offline maka bisa melakukan asesment secara menyeluruh seperti: (i) TAN DELTA digunakan untuk menguji kondisi isolasi trafo; (ii) SFRA (Sweep Frequency Response Analysis) untuk mengevaluasi mechanical integrity/ada tidaknya perubahan struktur mekanik peralatan; (iii) DIRANA (Dielectric Response Analysis) untuk memprediksi kondisi isolasi seperti oil conductivity dan kadar moisture pada selulosa paper; (iv) Pengecekan relay Bucholz; (v) Pengujian grounding dll
Berdasarkan data-data ini bisa disimpulkan bahwa terdapat hubungan/keterkaitan pada beberapa uji oil trafo dan itu merupakan sequence. Bidang-bidang yang saling terkait dan tidak bisa berdiri sendiri juga menjadi faktor keberhasilan menyehatkan trafo, dimana umumnya yang ditemui untuk asesment trafo adalah bidang elektrik saja padahal didalamnya ada peran bidang kimia dalam analisis mendalam tentang root-cause failure analysis (RCFA) yang menghasilkan beberapa rekomendasi.

Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2021). Hubungan/Keterkaitan Dalam Uji Oil Transformer/Trafo Meliputi DGA-BDV-Furan, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

Chemical Aditif pada Pelumas Oli (Oil Lubricating Additive)

Diposting oleh On Saturday, December 18, 2021

Oil Lubricating (pelumas oli) memiliki peran vital dalam melumasi antar 2 permukaan yang bergesekan. Berikut peran oil lubricating:

  1. Pelumas, peminimalisir gesekan & keausan
  2. Pendingin, penyalur panas keluar dari komponen yang bergesekan
  3. Pembersih, pembilas ruang yang bergesekan dari kotoran seperti carbon, sludge & varnish
  4. Pelindung, pencegah kerusakan material akibat oksidasi dan korosi
  5. Pemindah tenaga & panas
  6. Perapat, pencegah kebocoran
Pada oli selain base oil (kandungan utama mineral/sintetik/hewani/nabati) juga terdapat aditif/additive yang berfungsi meningkatkan performa oli sebagai pelumasan. Berikut macam-macam chemical additive pada oli:
  • Anti Wear, berfungsi mencegah terkikisnya material yang bergesekan, memberikan lapisan film pelindung yang cukup tebal dan melicinkan sehingga gesekan terminimalisir
  • Anti-Corrosion, berfungsi mencegah terjadinya korosi pada material yang dilewati pelumasan, karena oli mengandug asam & basa serta pengaruh oksidasi yang kondisi tersebut bisa menyebabkan korosi pada material
  • Anti-Oxidant, berfungsi mencegah terjadinya oksidasi antara oil dengan udara atmosfer
  • Anti-Foam, berfungsi mencegah terjadinya pembusaan pada oil yang bersifat merugikan karena mengganggu pelumasan dan sirkulasi oil
  • Anti-Acid, berfungsi mencegah terjadinya reaksi pembentukan asam yang merugikan peralatan
  • Detergent, berfungsi membilas ruang yang dilewati pelumasan dari kontaminan/kotoran
  • Anti-Dispersant, berfungsi mengikat kontaminan tak larut bisa berikatan dengan oli
  • Anti-Depresant/Pour Point, berfungsi mencegah oli membeku pada temperatur rendah dan tetap mengalir pada kondisi tersebut
  • Viscosity Improver, berfungsi mejaga kestabilan viskositas yang diakibatkan kontaminan atau mengurangi laju perubahan viskosits akibat perubahan temperatur




Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, YE. (2021). Chemical Aditif pada Pelumas Oli (Oil Lubricating Additive). www.caesarvery.com. Surabaya

Referensi:
[1] Feriyanto, Y.E. (2016). Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

Analisa Profil Kerusakan FIRE SIDE TUBE (OUTER) Boiler PLTU (3 of 3)

Diposting oleh On Friday, August 20, 2021

Artikel sebelumnya membahas tentang "Analisa Profil Kerusakan WATER SIDE TUBE (INNER) Boiler PLTU". Kali ini dibahas profil kerusakan  FIRE SIDE TUBE (OUTER) yang disebabkan oleh beberap hal seperti berikut: [Basu, 2015]

  • Fuel dengan chlorine (Cl) dan sulphur (S) tinggi
  • Kontrol pembakaran yang buruk
  • Overheating furnace dan flue gas temperature terlalu tinggi
  • Tube overheating
  • Erosion-Corrosion
  • Oxidation/reduction
  • Sulfidation
  • Chlorination
Mekanisme korosi yang terjadi di outer tube seperti berikut: oxide layer (magnetite-Fe3O4) memberikan lapisan pasifasi tube untuk menghindarkan reaksi kimia korosi. Proses pembakaran menghasilkan reducing agent seperti H2 dan CO yang bisa men-degradasi Fe2O3 dan Fe3O4 menjadi Fe (korosi adalah kembalinya senyawa/logam pada titik kestabilan membentuk unsur tunggal penyusunnya/bijihnya).
Ketika bahan bakar devolatilize maka akan menghasilkan unsur seperti Na, K, S dan Cl membentuk senyawa korosif seperti HCl, SO2, Na2SO4 dan NaCl.
  • Sulphate Corrosion
Merupakan lanjutan dari reaksi senyawa korosif hasil pembakaran dengan SO2 dan Fe2O3 seperti reaksi berikut:
3 Na2SO+ Fe2O3 + 3 SO3 ---> 2 Na3Fe(SO4)3

Namun bisa juga melewati reaksi tidak langsung membentuk pyrosulphate (Na2S2O7) seperti berikut:

Na2SO4 + SO3 ---> Na2S2O7

Pyrosulphate (Na2S2O7) inilah yang bersifat menyerang oxide layer tube.

  • Sulphide Corrosion
Pada kondisi tereduksi dan panas yang cukup tinggi FeS terbentuk. Sifat dari FeS sangat berbeda dengan FeO, dimana FeS porous dan tidak memberikan lapisan pasifasi bahkan membuat getas kekuatan mekaniknya.
  • Chlorine Corrosion
Chlorine (Cl) sebagai hasil sisa pembakaran bahan bakar bereaksi dengan Fe membentuk FeCl2 yang bersifat mudah menguap pada temperatur rendah sehingga mudah mengkorosi tube material. FeCljuga bisa terikut sampai flue gas dan jika bereaksi dengan O2 akan menghasilkan gas Clyang bersifat korosif.
  • Vanadium Corrosion
Pada flue gas temperatur tinggi, SO2 terkonversi menjadi SO3 yang reaksinya dipercepat oleh katalis V2Odan Fe2O3 di ash deposit.
  • Erosion-Corrosion
Disebabkan oleh sebagian besar karena pasir dan bahan bakar yang memiliki hardness yang besar serta karena sootblowing system.

Referensi:
[1] Basu, P. (2015). Circulating Fluidized Bed Boilers, Design, Operation and Maintenance. Canada