Trending Topik

Catatan Lengkap Pembakaran Batubara (Coal Combustion) Based Experience di Workshop CFB Boiler

Diposting oleh On Saturday, April 10, 2021

Perkembangan teknologi boiler semakin maju dengan meminimalisir kelemahan untuk mencapai efisiensi dan reliability, berikut skema urutannya:


  • Stoker Boiler
Awal mula bahan bakar (batubara) dengan size cukup besar dipanggang pada rantai berjalan (travelling grate). Pergerakan grate lambat sehingga di-estimasi batubara masuk dan sampai ujung sudah menjadi ash. Dari bawah disemburkan udara (PA Fan) yang berfungsi sebagai cooling grate agar coal tidak menempel (slagging). Teknologi ini disebut stoker boiler dan memiliki efisiensi yang cukup rendah karena kemungkinan coal tidak habis terbakar sampai ujung grate.
  • Bubbling Fluidized Bed (BFB) Boiler
Kelemahan stoker yang tidak habis terbakar disempurnakan kembali dengan membuat bubbling sehingga residence time pembakaran membuat coal terbakar lebih sempurna dan unburned carbon (UBC) terminimalisir. BFB ini cukup menambah udara pembakaran (PA Fan) sehingga coal seolah ter-fluidisasi dalam suatu kolom (furnace). Kelemahannya adalah mudah sekali terjadi penyumbatan pada bottom furnace ketika coal tidak benar-benar bubbling dalam furnace.
  • Circulating Fluidized Bed (CFB) Boiler
Kelemahan BFB disempurnakan kembali menjadi CFB, dimana pada prinsipnya melakukan circulating bed material (coal + sand) sehingga potensi untuk bubbling secara keseluruhan menjadi lebih sempurna dan terhindar dari penyumbatan bottom ash. Fluidisasi pada CFB dibantu dengan udara bakar (PA Fan + SA Fan), kelemahan yang mungkin ada pada CFB adalah potensi abrasi dan erosi. Apakah terdapat perbedaan keduanya?? IYA, abrasi adalah penipisan pada material logam (tube boiler) sedangkan erosi pada non-logam (refractory). Berbagai upaya telah dilakukan untuk meminimalisir dampak tersebut seperti: pengecekan thickness boiler, inspeksi refractory, analisa ash (bottom + fly), adjust damper PA + SA Fan, adjust size coal, pemilihan properties pasir bed material.
  • Pulverized Coal (PC) Boiler
Kelemahan CFB diminimalisir kembali dengan adanya teknologi PC boiler yaitu coal dihaluskan sehingga luas permukaan pembakaran menjadi besar dan diharapkan batubara langsung terbakar habis sekali lewatan umpan. Potensi abrasi dan erosi bisa diminimalisir karena size coal kecil dan tidak membutuhkan pasir namun untuk dampak ke lingkungan cukup besar karena ash solid + gas langsung terbuang sehingga membutuhkan treatment khusus yang cukup mahal seperti adanya Flue Gas Desulfurization (FGD). Selain itu, PC boiler ini membutuhkan auxiliary power yang cukup tinggi karena adanya pulverizer dan peralatan bantu lainnya sehingga secara ekonomis layak untuk PLTU kepasitas besar.
Melihat beberapa kelebihan dan kelemahan tersebut, maka yang secara ekonomi layak digunakan adalah CFB boiler dengan mempertimbangkan beberapa aspek dan pengoptimalan operasi untuk meminimalisir kelemahannya. Terbukti juga banyak pembangkit di Indonesia adalah tipe CFB.
Berdasarkan Basu (2015) sebagai berikut:
Prinsip Heat-Transfer pada Boiler PLTU:
  1. Radiasi, coal terbakar dan panas radiasi mengenai tube boiler
  2. Konduksi, tube boiler yang menyerap panas akan merata pada seluruh bagian metal
  3. Konveksi, panas pada metal kemudian terserap oleh feedwater pada inner tube dan merata sepanjang tube (feedwater-saturated-superheated)
Pembagian Zona Heat-Transfer pada Boiler PLTU:
  1. Combustion Zone, area pembakaran batubara di floor furnace dengan temperatur antara 1100-1200 oC
  2. Radiation Zone, area diatas combustion zone yang bercirikan bubbling bed material sudah tidak ada dengan temperatur antara 800-900 oC
  3. Convection Zone, area dimana fase steam (saturated & superheated) berada dengan temperatur sekitar 650 oC
Beberapa Hal yang Harus Diperhatikan di Boiler:
  • Boiler PLTU hanya didesain pada 1 tipe coal saja sehingga ketika properties yang masuk berbeda maka akan ada dampak pada operasionalnya sehingga unit PLTU diharapkan memiliki tabel khusus untuk planning operasi ketika ada properties feeding coal maka akan didapatkan beban yang diijinkan untuk dioperasikan
  • Istilah low rank, medium/moderate & high rank coal hanya istilah di marketing penyediaan batu bara saja sedangkan istilah dalam operasional PLTU adalah over-spec atau under-spec coal yang didasarkan pada desain boiler oleh manufacture
  • Berdasarkan prinsip gas ideal, PV=nRT sehingga tekanan (P) berbanding lurus dengan temperatur (T) dan ketika di boiler over-heat maka harus digali adalah penyebab over-pressure. Hal ini bisa disebabkan karena pengaruh PA Fan dan SA Fan sehingga membutuhkan combustion tuning. Hal ini bisa disebabkan juga karena adanya penyumbatan pada air nozzle cap oleh agglomerasi atau adanya fouling di tube boiler
  • Agglomeration pada boiler furnace lebih disebabkan karena berlebihnya feeding coal sedangkan melting karena properties coal itu sendiri yang banyak mengandung Na dan K sehingga menyebabkan titik leleh bed material menjadi turun.
BACA JUGA: Karakteristik Pasir (Bed Sand Material) dan Agglomeration pada Boiler CFB
  • Langkah yang umum dilakukan ketika steam overheating adalah mengaktifkan desuperheater (DSH) menggunakan demineralized water untuk menjaga temperatur steam pada standar Main Steam Temperature (MST). Sedangkan bagian luar yaitu tube boiler tidak terkendali dan tetap overheating sehingga potensi kebocoran mudah terjadi. Hal inilah yang seharusnya menjadi concern juga mengapa tube CFB boiler mudah terjadi leak. Selain itu, jika penggunaan DSH terlalu besar maka MST akan turun dan Main Steam Flow (MSF) turun sehingga langkah umum yang dilakukan operator adalah feeding kembali coal sehingga akan terus menambah temperatur tube boiler sehingga bisa overheating
  • Umpan coal boiler selalu fluktuatif properties-nya dan tergantung juga salah satunya dari jenis penambangannya yaitu: (i) open/ground mining, bertipe lignite cenderung besar kandungan Ca dan Si karena termasuk batubara permukaan yang bersifat lengket, tidak mudah pecah seperti tanah liat; (ii) close/under ground mining, cenderung dominan kandungan S yang bersifat korosif dan CH4 (metana) yang bersifat explosion, termasuk bituminuous & sub-bituminuous yang bersifat brittle mudah pecah. Stock batubara ini bukan ranah O&M pembangkitan melainkan owner sehingga sebagai O&M harus bisa menjelaskan dampak ketika coal properties yang diberikan under-spec dari desain boiler
  • Pembakaran di boiler hanya untuk yang reaksi bersifat eksothermis seperti C menjadi CO2, H menjadi H2O dan S menjadi SO2

Sedangkan N tidak terbakar karena untuk membentuk NOmembutuhkan panas yang sangat tinggi kisaran 1200-1300 oC (sesuai grafik yang diarsir diatas) dan sifat reaksinya adalah endothermis.  NOini di CFB boiler jarang bisa tercapai karena furnace temperature yang hanya berkisara antara 800-900 oC bahkan ketika sampai di convection zone turun sampai 650 oC. Sedangkan Ohanya sebagai pe-reduksi saja unsur yang terkandung pada coal
  • Coal tidak terbakar sempurna atau efisiensi termal rendah salah satunya adalah tingginya moisture content. Rekomendasi yang umum dilakukan adalah drying coal atau menimbun coal di ruang beratap (coal dome), namun perlu diketahui bahwa moisture content ada 2 yaitu: (i) surface content, terletak pada permukaan coal saja; (ii) inherent content, terletak didalam coal
  • CFB boiler cukup efektif dalam pengikatan kandungan SO2 karena didesain ada injector limestone/kapur (CaCO3) namun kebanyakan CFB boiler di Indonesia tidak mengaktifkan injeksi tersebut karena coal yang dipakai mengandung kadar S (sulfur content) yang rendah.
  • Reaksi pembentukan yang terjadi pada pembakaran coal sebagai berikut: S + O2 --> SO2 bersifat eksothermis dan reaksi penguraian kapur sebagai berikut: CaCO3 ---> CaO + CO2 bersifat eksothermis. Ketika CaO berikatan dengan SO2 maka terbentuk gypsum (CaSO4) fase solid yang bisa terbuang lewat bottom ash. berdasarkan hal tersebut, maka limestone berfungsi ganda selain untuk pengikat gas B3 juga sebagai penyerap panas sehingga boiler furnace tidak overheating
  • Exit flue gas temperature yang dianjurkan adalah 123 oC, karena jika dibawah temperature point tersebut akan terjadi dew-point corrosion yaitu pengkorosian pada ujung Air Pre-Heater (APH) sedangkan untuk diatasnya akan menyumbang kenaikan heat-loss pembakaran. Setiap kenaikan 4 oC akan meningkatkan heat-loss sebesar 5%. Ketika exit flue gas temperature tinggi maka radiasi yang ditransfer ke tube boiler berkurang sehingga mengurangi kalor serap di furnace boiler. Baca detail analisis reaksi di: Shell and Tube APH: Material, Korosi dan Karakteristiknya
  • Potensi abrasi tinggi banyak terjadi di welded tube boiler (level boiler bawah yang mengerucut) sehingga direkomendasikan untuk menambah refractory sampai ketemu diatas level tersebut, dimana tidak ditemukan lagi welded joint tube yang bersentuhan langsung dengan bubbling bed material
  • Urutan batubara terbakar adalah initial heating (pyrolisis/devolatilization/demineralization) yang melepas surface moisture kemudian pelan-pelan coal hancur dan melepas mineral kemudian terbakar terbentuk arang dan abu. 
  • Beberapa Cara Mencegah Agglomeration:
  1. Penambahan aditif kimia
  2. Pre-treatment bahan bakar sebelum masuk boiler
  3. Pemilihan alternatif lain bed material
  4. Blending & mixing coal dengan biomass (co-firing), blending adalah mencampur dengan umpan yang berbeda misalnya coal + cangkang sawit/bahan organik sedangkan mixing adalah pencampuran antara bahan yang bisa menyebabkan hasil berbeda bisa karena reaksi kimia dll, seperti fuel + udara
  • Terdapat kemungkinan kesalahan yang umum terjadi di lapangan ketika pengambilan sampling uji unburned carbon (UBC), umumnya sampel diambil begitu saja dari bottom ash tanpa melakukan seleksi padahal di bottom ash terdapat 2 carbon yaitu:
  1. Unburned coal, karakteristiknya adalah jika dipegang masih keras dan menggumpal
  2. Unburned carbon ash, karakteristiknya adalah lembut karena memang sudah jadi abu
Saran sebaiknya sampel diambil dengan memilah bagian yang terlihat halus namun masih mengandung butir-butir halus. Kesalahan pengambilan sampel ini bisa berakibat nilai UBC sangat tinggi (karena memang unburned coal masih besar nilai C-nya) dan data laboratorium yang dihasilkan kurang valid jika digunakan untuk analisa pembakaran. Letak sampling yang ideal adalah: (i) unburned carbon ash di bottom ash floor furnace; (ii) unburned coal di drain sealpot cyclone
  • Standar baku rasio PA Fan : SA Fan adalah 60 : 40, namun itu untuk properties batubara desain, jika terdapat perbedaan spesifikasi maka hasil combustion tuning-lah yang dipakai
  • Menganalisis kapasitas PA Fan + SA Fan apakah lebih besar (>) atau lebih kecil (<) dengan ID Fan sangat diperlukan untuk menentukan potensi flow fluida apakah over-pressure atau under-pressure
  • Salah satu indikasi overheating boiler adalah bubbling bed material tidak sempurna karena coal size terlalu besar sehingga cenderung berada di floor furnace dan bisa menyebabkan melting % agglomeration.  
  • Agglomeration index lebih disebabkan karena coal yang dipakai adalah low rank (lignite) bersifat lengket seperti tanah liat (clay) sehingga ketika bercampur dengan pasir maka akan terjadi ikatan yang menyebabkan densitas bed material naik sehingga mengganggu bubbling dan jatuh ke floor furnace terbentuklah aglomerasi
  • Overheating juga bisa disebabkan karena pembakaran tidak sempurna karena minimnya excess air (O2). Tujuan dari excess air pada pembakaran di boiler furnace adalah untuk pembakaran sempurna menghasilkan (CO2) dan menghindarkan pembakaran tidak sempurna (CO). Sesuai reaksi:

C + O ---> CO

C + 3/2 O2 ---> CO2

Kebutuhan O2 antara kedua reaksi tersebut berbeda, dimana kebutuhan yang lebih besar adalah untuk menghasilkan CO2 dan inilah tujuan excess air. Mengapa jika menghasilkan CO tidak diinginkan di boiler furnace?? karena dari pembakaran tidak sempurna melanjutkan reaksi menuju sempurna sesuai reaksi: CO+ 1/2 O2 ---> CO2 menghasilkan panas (eksothermis) yang bisa menambah temperatur ruang bakar di zona radiasi (level 2 pada pembagian 3 level boiler yaitu: level 1-combustion, level 2-radiasi, level 3-konveksi) sehingga menyebabkan overheating. Cara mencari excess air dan kebutuhan udara pembakaran sebagai berikut:

  1. Mengetahui komposisi coal dari CoA
  2. Menghitung stoikometri rasio
  3. Mengetahui total coal flow
  4. Menghitung stoikiometri air flow = stoikiometri rasio x total coal flow
  5. Menghitung excess air = [oksigen terbaca di furnace / (20.9-oksigen terbaca di furnace)] x 100%
  6. Total air flow = [100%+ excess air] x stoikiometri air flow
Lebih detail BACAStoikometri pada Pembakaran Batubara (Excess Air dan Air Fuel Rasio) di Boiler Furnace PLTU

  • Parameter operasi utama di boiler adalah velocity dan residence time, dimana velocity CFB boiler berkisar ± 6 m/s dan residence time berkisar 1-2 s di radiation zone. Velocity & residence time dihitung hanya antara combustion zone (level 1) sampai radiation zone (level 2), sehingga apabila masih terdapat panas berlebih di convection zone (level 3) maka itu adalah heat-loss karena fase sudah superehated yang tidak memerlukan panas lagi
  • Fluidisasi di CFB boiler ada 2 yaitu: (i) furnace boiler karena adanya PA/SA Fan; (ii) seal pot cyclone karena adanya return fan/seal fan/HP blower
  • Standar asumsi persentase ash di boiler adalah bottom ash : fly ash = 80 : 20
  • Ketika kandungan alkali di CoA bahan bakar >9% maka bisa dipastikan terdapat potensi agglomeration yang besar
Kutip Artikel ini Sebagai Referensi (Citation):
Feriyanto, Y.E. (2021). Catatan Lengkap Pembakaran Batubara (Coal Combustion) Based Experience di Workshop CFB Boiler, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

Referensi:
[1] Feriyanto, Y.E. (2021). Workshop CFB Boiler. Surabaya
[2] Basu, P. (2015). Circulating Fluidized Bed Boiler, Design Operation and Maintenance. Canada

Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

Batasan Parameter Standard Air Baku PLTU

Diposting oleh On Sunday, March 28, 2021

Aliran proses yang umum ada di PLTU sebagai berikut: 

Air laut-Bak pengendapan/clarifier/sedimentation pond-Multi media filter (MMF)-Desalination (RO/MSF/MED)-Demineralization (mixed bed/single bed)-Condensate Water-Outlet deaerator/lnlet economizer-Boiler water/steam drum-Saturated steam/outlet drum-Superheated steam

  • Bak Pengendapan/Clarifier, berfungsi menurunkan kadar lumpur/suspended solid. Parameter standar umum outlet clarifier adalah:
  1. Turbidity, <5 NTU
  2. Total Suspended Solid (TSS), <10 ppm
  • Multi-Media Filter (MMF)/Activated Carbon/Sand Filter. Parameter standar umum outlet MMF adalah:

    1. Turbidity, <1 NTU
    • Desalination, berfungsi meminimalisir kandungan garam dengan prinsip filter membrane untuk RO dan distilasi untuk MED. Parameter standar umum outlet desalination adalah:
    Inlet SWRO
    1. Turbidity, <1 NTU
    2. Free Chlorine, <100 ppb
    3. Silt Density Index (SDI)<5
    Outlet SWRO
    1. pH, 6-8
    2. Conductivity, <800 µS/cm
    Outlet BWRO
    1. pH, 6-8
    2. Conductivity, <20 µS/cm
    • Demineralization, berfungsi meminimalisir kandungan mineral ion. Parameter standar umum outlet demineralization adalah:
    1. pH, 6-8
    2. Conductivity, <1 µS/cm
    3. Silica (SiO2), <20 ppb
    4. Chloride (Cl-), <100 ppb
    • Condensate Water, air keluaran condenser yang merupakan kondensasi steam turbine menjadi cair. Parameter standar umum outlet condensate water adalah:
    1. pH, 9-9.6 (TD), 8.8-9.3 (AM/BJ)
    2. Conductivity/Cation Conductivity, <11 µS/cm
    3. Chloride (Cl-), <100 ppb
    4. Silica (SiO2), <15 ppb (TD), <20 ppb (BK)
    5. Dissolved Oxygen (DO), <50 ppb
    6. Hardness Water, <1 ppb (air laut), <40 ppb (air sungai)
    7. Iron (Fe), <20 ppb
    • Deaerator/Economizer, deaerator berfungsi menurunkan dissolved gas sebelum masuk boiler, parameternya sama antara outlet deaerator & inlet economizer sebagai berikut:
    1. pH, 9-9.6
    2. Conductivity, <11 µS/cm
    3. Iron (Fe), <30 ppb (TD), <20 ppb (BT)
    4. Hydrazine (N2H4), 10-30 ppb (TD), 30-50 ppb (AM)
    5. DO, <7 ppb
    6. Silica (SiO2), <20 ppb
    • Steam Drum/Boiler Water, air yang sudah dipanaskan dan treatment di steam drum namun masih dalam fase semi liquid-vapor (saturated steam) untuk siklus kembali ke boiler furnace (downcomer steam drum). Parameter standar umum boiler water adalah:
    1. pH, 9.2-10.5
    2. Conductivity, <150 µS/cm (TD), <100 µS/cm (BK), <60 µS/cm (air sungai)
    3. Phospate (PO4), 0.5-3 ppm (TD), 2-10 ppm (BK)
    4. Chloride (Cl-), <2 ppm (TD), <1 ppm (BK)
    5. Silica (SiO2), <2000 ppb (TD), <800 ppb (AM)
    6. Iron (Fe), <250 ppb
    1. pH, 9-9.6
    2. Conductivity, <11 µS/cm (TD), <15 µS/cm (BK)
    3. Silica (SiO2), <20 ppb
    4. Iron (Fe), <20 ppb
    5. Chloride (Cl-), <0.1 ppm
    Ingin Konsultasi dengan Tim Expert Website Silakan, KLIK

    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2021). Batasan Parameter Standard Air Baku PLTU, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Referensi:
    [1] Feriyanto, Y.E. (2015). Best Practice Experience in Power Plant. Surabaya

    Tahapan Start-Stop Boiler PLTU

    Diposting oleh On Saturday, March 20, 2021

    Terdapat beberapa tahapan sebelum start-stop boiler PLTU seperti berikut:

    1. Sebelum Start

    • Memastikan seluruh pekerjaan maintenance sudah selesai dilakukan
    • Pengecekan seluruh fungsi alat telah bekerja normal
    • Pengoperasian sistem pendingin (cooling water)
    • Pengoperasian udara bertekanan (compressed air)
    • Memastikan ketersediaan demin water untuk make-up boiler
    • Memastikan sand feeding system dan coal fuel system
    • Pengecekan control & safety interlock system telah bekerja normal
    2. Grid Pressure Drop Test

    1. Fungsi untuk mengecek kebuntuan grid nozzle
    2. Menguji setiap beban berbeda pada PA Fan
    3. Membandingkan antara data yang didapatkan dengan desain dan seharusnya tidak boleh >10% data desain
    3Cold Start Boiler

    Pada sistem cold start boiler terdapat beberapa tahapan seperti:
    3.1 Fill Boiler
    • Melakukan close semua drain valve
    • Melakukan open semua air vent di steam drum & superheated
    • Membuka start-up vent valve 10-15%
    • Menaikkan pelan-pelan feed water/boiler water ke steam drum sampai level 1/3 dari sight glass
    3.2 Start Fan
    • Start ID Fan
    • Start HP Blower
    • Start SA Fan
    • Start PA Fan

    3.3 Boiler Interlock
    Menyambungkan seluruh kesiapan boiler system operasi dan melakukan setting:
    3.4 Purge
    Sebelum start burner maka di furnace boiler harus dilakukan purging/flushing/pembersihan dari gas-gas yang mudah terbakar atau akumulasi bahan kimia yang bisa membuat boiler meledak. Purging time direkomendasikan rata-rata 5 menit (300 detik).
    3.5 Start-Up Burner
    Ketika semua peralatan pendukung boiler sudah OK dan siap dilanjutkan purging pembersihan di furnace system maka burner bisa dinyalakan. Berikut kondisi operasi burner boiler system:
    • Burner dinyalakan setelah memenuhi persyaratan seperti: [i] interlock boiler sudah OK, [ii] oil turbine pressure > minimum, [iii] control air pressure > minimum, dan [iv] atomizing air pressure > minimum
    • Burner akan mati jika bed temperature sudah mencapai >850 C, karena untuk CFB boiler akan diteruskan panasnya oleh bed sand (pasir)
    3.6 Steam Drum & Deaerator Low Level Cut Off
    Setelah pembakaran boiler sudah dilakukan maka untuk keberlanjutan operasi perlu dilakukan pengetesan sinyal & sensor apakah safety-nya bekerja. Cara melakukan seperti membuka valve drain sampai low level sehingga level steam drum dan deaerator turun dibawah minimum yang disyaratkan. Ketika sensor OK membaca maka bisa dilanjutkan untuk continuous operation.

    3.7 Boiler Warm-Up
    • Menaikkan temperatur boiler perlahan untuk menghindari efek thermal stress pada part, refractory & steam drum
    • Kenaikan temperatur yang diijinkan adalah 60-80 oC/hr
    • Mengontrol flue gas temperatur <470 oC sampai steam flow > 10% MCR (Maximum Continuous Rating)
    • Close vent valve steam drum & superheat (SH) ketika P >2 bar
    • Meneruskan firing rate mengikuti kurva start-up rekomendasi dari pabrikan
    • Mengoperasikan desuperheater (DSH) ketika steam temperatur >30 oC dari design point
    • Secara perlahan close start-up & drain valve ketika steam flow >10% MCR
    3.8 Feed Bed Material
    • Start feed sand (pasir) ketika bed temperature > 150 oC
    • Menghindari firing rate >30% dari desain ketika bed pressure < 20 mbar yang bisa berdampak pada overheating refractory & nozzle
    • Continyu feed bed/feed solid material sampai mencapai 30 mbar

    3.9 Feed Solid Fuel

    • Memasukkan solid fuel ketika bed temperature >600 oC
    • Menambah feed solid setiap 1.5 menit (90 detik)
    • Memasukkan lime stone (jika ada akses) dan membuka jalur ash removal
    • Secara perlahan mengurangi burner firing rate ketika solid fuel perlahan dinaikkan
    • Menghentikan burner satu per satu dan mengobservasi kenaikan bed temperature
    • Memindah operasi ke mode auto agar otomatis alarm ketika ada gangguan/ketidaknormalan
    3.10 Rise to MCR
    • Melanjutkan kenaikan temperature & pressure mengikuti kurva rekomendasi pabrikan sampai mencapai design point
    • Drain bottom ash ketika bed pressure >45-55 mbar
    • Pelan-pelan menutup start-up valve
    • Memonitor seluruh parameter dan memastikan sesuai standar

    4. Shutdown Boiler

    4.1 NORMAL Shutdown

    • Menurunkan boiler load sampai 50% MCR
    • Memonitor O2 dan bed temperature
    • Kontinyu menurunkan boiler load mengikuti kurva standar shutdown dari pabrikan
    • Menjaga SH steam >20 oC dari saturation temperature
    • Start burner ketika bed temperature < 50 oC
    • Mengosongkan solid fuel (coal bunker) & lime stone (jika ada) ketika bed material temperature >650 oC
    • Mengurangi burner firing rate mengikuti kurva yang direkomendasikan pabrikan
    • Menjaga drum level pada mode manual
    • Menghentikan umpan bahan bakar
    • Menjaga drum level mendekati upper limit
    • Meneruskan fluidizing sampai bed temperature mencapai 300 oC
    • Pelan-pelan close inlet damper PA Fan & SA Fan sehingga ID Fan dapat mengontrol furnace pressure dalam mode otomatis
    • Stop all fan sesudah semua damper close
    • Stop HP Blower 30 detik setelah ID Fan dimatikan
    • Stop chemical injection ketika BFP stop
    • Kontinyu mengoperasikan ash removal system sampai kosong
    • Open vent valve pada steam drum & superheated ketika drum pressure mencapai 1.5-2 bar
    • Open manhole disekeliling furnace ketika bed temperature <300 oC
    4.2 EMERGENCY Shutdown
    • Boiler dapat didiamkan dalam keadaan hot stand by sekitar 8 jam
    • Hot condition adalah bed temperature masih >650 oC kemudian diikuti prosedur cold start-up
    • Boiler load dikendalikan sampai ke minimum operasi
    • Stop fuel feeding
    • Menunggu peningkatan kadar Osampai 2x dari operasi normal
    • Stop udara pembakaran untuk meminimalisir heat loss
    5. Hot Restart
    • Purge boiler ketika bed temperature <600 oC
    • Start burner ketika bed temperature <500 oC
    • Memonitor kenaikan bed temperature
    • Jika bed temperature tidak naik sesudah menambahkan coal feeding maka dilakukan penghentian feeding dan start purging (terindikasi ada blocking pada sensor atau didalam furnace)
    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2021). Tahapan Start-Stop Boiler PLTU, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

    Unburned Carbon (UBC) Pembakaran Batubara dan Uji Loss On Ignition (LOI)/Hilang Pijar

    Diposting oleh On Saturday, March 06, 2021

    Unburned Carbon/Hydrocarbon (UBC) adalah karbon/bahan bakar yang tidak habis terbakar pada proses pembakaran. Semakin besar nilai UBC maka semakin tidak efisien suatu bahan bakar, karena banyak energi yang masih belum terkonversi. Artikel kali ini difokuskan pada unburned carbon di PLTU, dimana banyak kandungannya pada fly ash-bottom ash (FABA). Nilai unburned carbon yang tinggi tidak bagus untuk efisiensi proses pembakaran dan juga untuk lingkungan seperti bisa menyebabkan polusi groundwater, polusi udara, permasalahan pernafasan.

    Coal ash terbagi menjadi 3 bagian yaitu: slag (kerak), fly ash & bottom ash. Komponen utama fly ash adalah unburned carbon & spherical ash (glass cenosphere, magnetic particle & Si-Al ash) [Xing et al, 2019]

    Unburned Carbon tidak bisa sepenuhnya dihilangkan dan hanya bisa diminimalisir, seperti pada jurnal Gurusingam et al (2017) dilaporkan bahwa pada fly ash kandungan UBC bisa diminimalisir sampai kandungannya menjadi 2-5% dari total %wt fly ash. Xing et al (2019) menuliskan kandungan carbon pada fly ash (UBC) antara 2-12% dengan detail untuk fly ash grade I nilai UBC <5%, berikut kutipannya:

    Gurusingam et al (2017) melakukan simulasi pembakaran pada soFtware Computational Fluid Dynamic (CFD) dengan variabel %excess O2 disimpulkan bahwa dengan penambahan 5.2% excess O2 bisa menurunkan 32% ppm unburned carbon. Mengapa %excess Oberpengaruh terhadap UBC???, bisa dibaca detail artikel Feriyanto (2020).

    Proses terbentuknya unburned carbon menurut Xing et al (2019) sebagai berikut:

    Terdapat 3 tahapan yaitu:
    • Drying & Preheating
    Awal mula moisture content coal menguap karena suhu pemanasan yang semakin naik, ini juga diikuti oleh penguapan volatile matter batubara
    • Combustion
    Batubara terbakar melibatkan kontak antara volatile matter + oksigen sehingga terjadi pembakaran awal partikel karbon dan pembakaran sempurna fixed carbon. Fixed carbon inilah yang memberikan energi panas boiler system.
    • Discharging
    Setelah waktu pembakaran berjalan maka ash content terus bertambah & oksigen terus berkurang sehingga mengurangi daya bakar coal dan menyebabkan unburned carbon yang kemudian keluar lewat cerobong. 

    Kandungan pada fly ash sebagai berikut: [Jdrusik and Wierczok, 2011]; [Grochowiak et al, 2004]


    Penambahan kandungan unburned carbon di fly ash boiler dalam uji secara analis setara dengan Loss-on Ignition (LOI) yaitu bahan bakar yang lolos dari pembakaran (tidak terbakar) [David and Kopac, 2017]. Menurut Bjurstrom et al (2014), LOI adalah metode untuk menentukan apakah pembakaran menyisakan residu yang tidak bisa terserap oleh waterwall boiler system (water).
    Berikut langkah-langkah uji LOI atau hilang pijar: [Feriyanto, 2016]
    Peneliti seperti Bjurstrom et al (2014) memaparkan bahwa temperatur untuk uji LOI bisa berbeda-beda tergantung bahan bakar seperti:
    • Biomass (550 oC), alasan biomass dibuat temperatur rendah adalah agar potassium (K) dan chlorine (Cl) tidak dihitung sebagai oxidisable carbon
    • Coal (750 oC)
    • Coal (950 oC)
    Metode yang hampir sama juga terdapat pada jurnal penelitian Yang et al (2020) sebagai berikut:
    Xing et al (2019) menuliskan penyebab umum dari unburned carbon sebagai berikut:
    Unburned carbon terbanyak ada pada fly ash dibandingkan bottom ash. Faktor yang mempengaruhi level UBC di fly ash adalah [1] desain sistem pembakaran, [2] kondisi operasi. Desain pembakaran meliputi: [i] tipe pembakaran, [ii] jumlah burner, [iii] kebutuhan udara/oksigen pembakaran (teknologi pembakaran), [iv] pembakaran sisa, [v] tekanan & temperatur pembakaran, [vi] ketersediaan oksigen, dan [vii] furnace heat loading. Selain itu juga ada pengaruh dari karakteristik batubara seperti coal rank, komposisi coal (volatile matter, moisture content), size batubara, coal car properties, coal mineral matter, coal blending [Xing et al, 2019].
    Nilai Loss On Ignition (LOI)/hilang pijar tergantung pada ash batubara dan jika dirunut maka tergantung pada tipe batubara seperti: [i] lignite ash (LOI 0-5%), [ii] sub-bituminous ash (LOI 0-3%), dan [iii] bituminous ash (LOI 0-15%) [Xing et al, 2019].
    Berdasarkan tabel tersebut terdapat perbedaan untuk kadar LOI berdasarkan tipe boiler yaitu pulverizer fuel (PF), nilai LOI sebesar 0.7-15 dan circulating fluidized bed (CFB), nilai LOI sebesar 2-12.
    Terdapat pendekatan perhitungan dari EPRI "Heat Rate Improvement" berikut kutipannya:
    Beberapa penyebab tingginya unburned carbon (UBC) di PLTU adalah:
    • Kurangnya excess air, hal ini berdampak pada pembakaran yang tidak sempurna pada hydrocarbon (batubara) sehingga masih meninggalkan carbon yang tidak habis terbakar
    • Sistem mixing antara bahan bakar dan udara yang kurang optimal di furnace, hal ini bisa karena letak inlet udara bakar atau besarnya bukaan damper (PA/SA Fan) yang kurang pas sehingga harus dilakukan combustion tuning
    • Untuk tipe boiler PF bisa karena setting size pulverizer yang tidak standar,  sehingga batubara yang berukuran terlalu besar tidak habis terbakar sampai waktu pembakarannya habis
    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2021). Unburned Carbon (UBC) Pembakaran Batubara dan Uji Loss On Ignition (LOI)/Hilang Pijar, Best Practice Expereince in Power Plant. www.caesarvery.com. Surabaya

    Referensi:

    [1] Feriyanto, Y.E. (2020). Prinsip Pembakaran Hydrocarbon untuk Mencapai Efisiensi Tinggi di PLTU, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    [2] Feriyanto, Y.E. (2016). Uji dan Analisa LOI/Hilang Pijar pada Bed Sand CFB, Best Practice Experience in Power Plant. Surabaya

    [3] Gurusingam, P., Ismail, F.B., Gumnasegaran, P., and Sundaram, T. (2017). Intelligent Monitoring System of Unburned Carbon of Fly Ash for Coal Fired Power Plant Boiler. MATEC Web of Conferences, Vol 131-02003

    [4] Jdrusik, M and Wierczok, A. (2011). The Influence of UBC Particles on ESP Collection Effieciency. J. of Physics, Vo. 301, 012009

    [5] David, E., and Kopac, J. (2017). Functional Carbon Structures Derived from UBC Contained in Fly Ash. Material Today:Proceeedings, Vol. 7, 817-827

    [6] Yang, Z., Chang, G., Xia, Y., He, Q., Zeng, H, Xing, Y., and Gui, X. (2020). Utilization of Waste Cooking Oil for Highly Efficient Recovery of  Unburned Carbon from Coal Fly Ash. J. of. Cleaner Production

    [7] Xing, Y., Guo, F., Xu, M., Gui, X., Li, H., Li, G., Xia, Y., and Han, H. (2019). Separation of Unburned Carbon from Coal Fly Ash: A Review. J. of Powder Technology, Vol. 353, pp. 372-384

    [8] Bjurstrom, H., Lind, B., and Lagerkvist, A. (2014). Unburned Carbon in Combustion Residues from Solid Biofuels. J. of Fuel, Vol. 117, pp. 890-899

    [9] Grochowiak, K.S., Golas, J., Jankowski, H., and Kozinski, S. (2004). Characterization of the Coal Fly Ash for the Purposes of Improvement of Industrial On-Line Measurement of Unburned Carbon Content. J. of Fuel, Vol. 83, pp. 1847-1853

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

    Karakteristik Pasir (Bed Sand Material) dan Agglomeration pada Boiler CFB

    Diposting oleh On Monday, February 22, 2021

    Pada boiler tipe CFB, pasir memiliki peranan yang vital dalam pembakaran. Namun melangkah sejauh ini penulis di bidang enjiniring pembangkitan sering menemui dan mengkaji RCFA tentang pengaruh pasir terhadap agglomeration, abrasion, corrosion dan fluktuatif temperatur operasi boiler. Pada dasarnya pasir (bed sand) boiler CFB yang direkomendasikan adalah yang tahan terhadap temperatur tinggi pembakaran (operasi boiler CFB umumnya di rentang 850-900 oC), sehingga pasir harus memiliki melting point diatas itu. Penulis juga pernah melakukan uji beberapa karakteristik pasir menggunakan teknologi X-ray Diffraction (XRD) sebagai berikut:


    Dengan menggunakan metide spectrofotometri AAS didapatkan sebagai berikut:

    Dari pengujian tersebut bisa diketahui bahwa komposisi dominan pasir adalah: silica (SiO2) kemudian diikuti komposisi kecil seperti alumunium oxide (Al2O3), Fe2O3 dan CaO. Silica memiliki melting point yang cukup tinggi yaitu 1450 oC. sehingga ketika digunakan pada pembakaran di boiler CFB aman dari potensi agglomerasi. Parameter lain yang harus juga dilihat adalah size dan hardness pasir, dimana size disesuaikan dengan standar dari manual book umumnya yang pernah penulis temukan adalah 0-1 mm. Hardness inline dengan kadar silica dalam pasir, dimana jika terlalu tinggi maka pasir sangat keras dan bersifat abbrasive terhadap refractory dan tube boiler. Pada boiler CFB, size yang terlalu besar kurang bagus karena sulit untuk bubbling sehingga potensi high temperature pada bottom boiler bisa terjadi dan juga tidak bagus jika terlalu kecil karena akan mudah sekali terhembus udara dan menuju ke cyclone akibatnya akan high temperature pada upper boiler.

    BACA JUGA: Macam-Macam Boiler PLTU

    Selain permasalahan diatas, terdapat hal yang cukup sering terjadi dan vital berpengaruh pada operasional di pembangkitan yaitu agglomerasi/penggumpalan pada bottom boiler/bottom ash. Untuk permasalahan ini harus dilihat secara overall fuel system yang terlibat di boiler CFB seperti batubara, pasir dan limestone (optional). Bottom ash adalah sisa pembakaran boiler yang terletak di dasar dan secara periodik dilakukan drain bottom ash untuk membuang fuel system yang tidak habis terbakar. Mengapa terdapat bottom ash?? di setiap proses pembakaran yang melibatkan macam-macam fuel system pasti tidak 100% terkonversi menjadi energi dan umumnya 75-85% saja sudah sangat bagus sehingga terdapat sisa fuel system yang tidak habis terbakar seperti batu, kerikil, batubara keras, tanah atau lapisan atas dari batubara tipe low rank coal dan materi unburned carbon lainnya. Komposisi batubara bisa dilihat di artikel berikut: Certificate of Analysis (CoA) Batubara Uji Laboratorium
    Pada CoA batubara yang berpengaruh besar terhadap agglomerasi adalah kandungan alkali seperti K2O dan Na2O. Agglomerasi dibedakan menjadi 2 yaitu: [Mettanant et al, 2009]
    1. Defluidization & Sintering Induced Agglomeration, dipengaruhi karena terhambatnya proses fluidisasi di bed furnace bisa disebabkan karena water content pada fuel atau tekanan udara yang kurang. Hal ini mengakibatkan overheating pada spot bottom boiler sehingga tercapai melting point temperature bahkan diatas titik leleh fuel system misalnya saja potassium salt meleleh pada 754 oC [Basu, 2006]. Sintering adalah ikatan kimia sementara antara partikel yang disebabkan oleh difusi molekular pada interface partikel dan HANYA TERJADI ketika temperatur diatas temperatur penggumpalan mula bed partikel yang digunakan [Siegell, 1976].

    2. Melt Induced Agglomeration, terjadi karena kandungan kimia pada fuel system mencapai melting point-nya sehingga terjadi penggumpalan pada bottom boiler. Basu (2006) pernah melakukan eksperimen sebagai berikut:
    Produk dari reaksi silica + alkali berupa eutectic mixture of silicate memiliki melting point 874 oC, sehingga ketika boiler furnace dioperasikan pada max 900 oC memiliki potensi untuk agglomerasi ketika batubara memiliki kandungan alkali yang besar (K2O dan Na2O). Umumnya untuk umpan batubara kecil kemungkinan terjadi namun tidak untuk biomass.
    Hulkkonen et al (2003) melakukan publikasi untuk menentukan potensi agglomerasi suatu fuel system yang dinamakan "Agglomeration Index" seperti berikut:
    Diketahui bahwa Gol IA-Alkali (K, Na) adalah PENYEBAB aglomerasi sedangkan Gol IIA-Alkali Tanah (Ca, Mg) adalah PENCEGAH aglomerasi. Berikut alternatif yang bisa digunakan untuk menghindari agglomerasi:
    Bisa ditarik kesimpulan bahwa penggunaan pasir efektif untuk menghindari agglomerasi adalah yang dominan kandungan alumina ore/bauxite dan juga manganese ore. Sedangkan jika pasir yang dominan adalah silica/quartz maka bisa ditambahkan dolomite atau batu kapur. Namun juga terdapat pertimbangan, mengapa boiler CFB yang beroperasi di Indonesia kebanyakan tidak memakai umpan limestone/batu kapur ?? karena umpan batubara yang dipakai kebanyakan adalah tipe rendah/low rank coal, dimana ini adalah batubara muda yang letaknya paling atas sehingga masih bersentuhan dengan tanah dan kapur sehingga kandungan kapur masih cukup tinggi.

    Penulis pernah melakukan uji bottom ash menggunakan XRD sebagai berikut: [Feriyanto, 2020]

    Analisa:
    • Kandungan silica (SiO2) adalah chemical utama pada pasir dan normal ada di bottom ash dengan %komposisi tersebut
    • Al2O3 bisa berasal dari batubara + pasir, dengan tidak ada dampak penyebab agglomerasi pada pembakaran di furnace [Mettanant et al, 2009].

    • NaAlSi2O6 adalah senyawa kompleks yang merupakan gabungan antara Na + Al + 2 SiO2 + O2 . Ketika semua unsur bereaksi yaitu silica (SiO2) + alkali (Na/K) maka akan terbentuk eutectic mixture of silicate (NaSiO2) dan berdasarkan uji XRD ini terjadi di sampel tersebut. Tipe agglomerasi yang terbentuk adalah "melt-induced" yang terjadi pada temperatur tinggi >874 oC [Mettanant et al, 2009].

    Rekomendasi:

    • Menambahkan serbuk batu kapur (CaCO3) atau dolomit (CaO-MgO) pada proses pembakaran di furnace boiler. Ini berfungsi sebagai penghambat terbentuknya agglomerasi [Mettanant et al, 2009].

    • Mengatur pola operasi dengan menjaga temperatur bed furnace <874 oC (berdasarkan hasil uji XRD bottom ash boiler). Hal ini karena alkali silicate (Na/K + SiO2) memiliki titik leleh yang rendah yaitu NaSiO2 pada 874 oC dan KSiO2 pada 754 oC [Basu, 2006].
    • Untuk kejadian ini dimungkinkan terjadi melt-induced agglomeration karena ditemukan senyawa eutectic mixture of silicate (NaSiO2) pada bottom ash
    Kutip Artikel ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2020). Karakteristik Pasir (Bed Sand Material) dan Agglomeration pada Boiler CFB, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Referensi:
    [1] Feriyanto, Y.E. (2020). Uji Laboratoium Bottom Ash Using XRD, Best Practice Experience in Power Plant. Surabaya
    [2] Feriyanto, Y.E. (2020). Certificate of Analysis (CoA) Batubara Uji laboratorium, Best Practice Experience in Power Plant. Surabaya
    [3] Mettanant, V., Basu, P., and Butler, J. (2009). Agglomeration of Biomass Fired Fluidized Bed Gasifier and Combustor. J. of Chem. Eng, Vol. 87

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

    Siklus All Volatile Treatment (AVT) Uap-Air di PLTU

    Diposting oleh On Wednesday, February 10, 2021

    All Volatile Treatment (AVT) adalah tindakan injeksi kimia yang hanya menggunakan chemical volatile (mudah menguap/terurai) sehingga meninggalkan minimum endapan solid. Injeksi tersebut digunakan untuk mengurangi pemborosan energi pada proses selama operasional boiler PLTU seperti menghilangkan blowdown system, pengurangan injeksi kimia phospate dan mengurangi kemungkinan deposit silica carry-over sampai ke blade turbine.
    Macam-Macam Volatile Chemical:
    • Hydrazine (N2H2), tidak pernah digunakan pada tipe boiler supercritical/ultra-supercritical [Dooley et al, 2010]
    • Formic acid/Asam semut (CH2O2)
    • Acetic acid/Asam cuka/Asam etanoat (CH3COOH)
    • Chloride high volatile (as hydrochloric acid-HCl), minor volatile (as ammonium chloride-(NH4Cl) dan low volatile (as sodium chloride-NaCl)
    • Sodium hydroxide (NaOH)
    • Phosporic acid (H3PO4)
    • Ammonia (NH3)
    • Amine (-NH2)
    Macam-Macam Non-Volatile Chemical:
    • Trisodium phospate (Na3PO4)

    Terdapat 3 AVT yang umum ditemui di sistem siklus uap-air PLTU: [EPRI Guidelines]
    • Reducing All-Volatile (AVT-R), adalah penggunaan reducing agent dengan nilai electrochemical potential negatif (sangat rendah). Contoh bahan kimia AVT-R adalah hydrazine dan ammonia untuk menaikkan pH, dimana Oxidation-Reduction Potential (ORP) bernilai dalam range -300 s/d -350 mV [electrode : Ag/AgCl/sat, KCl) dan range dijaga pada nilai tersebut dengan tujuan untuk melindungi mixed metallurgy tube boiler terutama copper (Cu) alloy agar tidak terjadi copper transport. Penggunaan AVT pada feedwater dijaga pada pH antara 8.8-9.8 dan terbagi menjadi 2 kategori yaitu: (i) low level AVT, pH antara 8.8-9.3 (khusus Cu alloy) dan high-level AVT, pH antara 9.2-9.8 [Dooley et al, 2010]
    • Oxidizing All-Volatile (AVT-O), peniadaan reducing agent sehingga nilai electrochemical potential positif (sangat tinggi) dengan sistem oxygen scavenger hanya memanfaatkan mechanical deaerator tanpa chemical dan penggunaan chemical hanya ammonia untuk menaikkan pH sehingga ORP bernilai 0 mV atau bernilai positif. Rekomendasi yang umum diberikan sebaiknya tidak menggunakan AVT (O) pada material boiler dan condenser yang terdapat bahan copper (Cu).
    • Oxygenated Treatment (OT), penggunaan oxidizing agent (ex: hydrogen peroxide, oxygen) dan ammonia untuk menaikkan pH, dimana ORP bernilai +100 s/d +150 mV. OT sebenarnya difokuskan untuk mengurangi single-phase FAC (Flow Accelerated Corrosion) dan meminimalisir perpindahan iron dari feedwater.
    Aplikasi yang cocok untuk:
    • All-ferrous material: AVT-O dan OT
    • All-ferrous & mixed metallurgy: AVT-R
    Parameter yang digunakan di AVT meliputi: [Kurita, 1999] [Frayne, 2002]
    • Total Carryover (TC)
    Yaitu total endapan berlebih di steam drum yang meliputi mechanical dan vaporous yang merupakan konsentrasi saturated steam yang keluar dari steam drum yang biasanya pengukurannya di sistem blowdown.
    Analisa total carryover menggunakan pengukuran sodium (Na)
    TC = Na saturated steam / Na blowdown
    • Conductivity
    • Silica
    • Iron
    • Copper (Cu) dan Nickel (Ni)
    • pH
    • Amine
    • Hydrazine
    • Total Solid
    • Ammonia
    • Sodium
    Kutip Artikel Ini Sebagai Referensi (Citation):
    Feriyanto, Y.E. (2020). Siklus All Volatile Treatment (AVT) Uap-Air di PLTU, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya


    Referensi:
    [1] EPRI. Cycle Chemistry Guidelines for Combined Cycle Heat Recovery Steam Generators
    [2] Dooley, B., and Svoboda, R. (2010). Improving Thermal Cycle Efficiency in Advanced Power Plants
    [3] Frayne, C. (2002). Boiler Water Treatment, Principle and Practice. Vol. 1 and 2. New York-USA

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI

    Ultrasonic Testing (UT) Teknik NDT (Non-Destructive Testing)

    Diposting oleh On Tuesday, January 05, 2021

    Ultrasonic Testing (UT) adalah salah satu teknik uji Non-Destructive Testing (NDT) yang memanfaatkan gelombang suara jenis ultrasonik. Terdapat 3 jenis gelombang yang kita kenal yaitu infrasonic (frekuensi <20 Hz), audiosonic (frekuensi 20-20.000 Hz) dan ultrasonic (frekuensi >20.000 Hz). Berdasarkan referensi EPRI Guidelines, UT NDT memanfaatkan frekuensi antara 0.5 MHz-50 MHz. Di lingkup teknik, khususnya di peralatan pembangkit listrik, teknologi ini banyak dimanfaatkan untuk identifikasi thickness, cacat (flaw), dimensi, diskontinuitas, flow dan size Macam-macam uji yang memanfaatkan UT sebagai berikut:

    Pada UT phased array terdapat macam-macam tampilan data dan dikenal dengan istilah A-scan, B-scan, C-scan dan S-scan, berikut detailnya:
    • A-Scan, Tampilan ini berbentuk peak-peak ketika terdapat cacat yang ter-scan oleh UT. Sumbu-X adalah jarak seiring waktu dan sumbu-Y adalah sinyal amplitudo

    • B-Scan, Tampilan berupa batang yang menunjukkan ada perbedaan struktur permukaan yang dilewati UT. Sumbu-X adalah lokasi dan sumbu-Y adalah waktu.
    Terdapat 2 macam B-Scan yaitu single value dan cross sectional.



    Ketika tampilan A-Scan dan B-Scan digabungkan akan tampil sebagai berikut:

    • C-Scan

    • S-Scan


    Berikut contoh uji menggunakan UT phased array pada pipe:
    • Preparation, Menyiapakan peralatan UT phased array
    • Cleaning, Membersihkan area yang akan diuji agar pengotor yang menutupi permukaan hilang dan transducer/probe UT tidak terganggu pembacaannya
    • Application, Scanning UT phased array mengelilingi area yang diuji
    • Monitoring, Mengendalikan dengan software, melakukan analisa dan recording
    Secara umum prinsip kerja UT phased array sebagai berikut:


    Kutip Artikel ini sebagai Referensi (Citation):
    Feriyanto, Y.E. (2020). Ultrasonic Testing (UT) Teknik NDT (Non-Destructive Testing), Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

    Referensi:
    [1] EPRI. Guidelines for the Non-Destructive Examination of Boiler

    Ingin Konsultasi dengan Tim Website, Silakan Hubungi DISINI